Skip to main content

Circular Dichroism and Isothermal Titration Calorimetry to Study the Interaction of α-Synuclein with Membranes

  • Protocol
  • First Online:
Alpha-Synuclein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1948))

Abstract

α-Synuclein’s physiology and pathology have been linked by numerous reports to its ability to bind and remodel membranes, especially at synaptic terminals. It is therefore critical for researchers investigating the determinants of these interactions to rely on methods capable of providing an accurate and complete physicochemical snapshot of the binding events. Circular dichroism (CD) and isothermal titration calorimetry (ITC) are established techniques for the study of binding equilibria in biological systems and, especially when used in combination, allow a thorough characterization of the protein-lipid interplay.

Here we provide general guidelines and describe some common pitfalls of these experiments. This protocol describes the preparation of small unilamellar vesicles (SUVs), mimicking the curved bilayers α-synuclein normally interacts with, the CD-monitored titration of α-synuclein with SUVs, the ITC (lipid-into-protein) experiment, and the subsequent data analysis using an n independent binding site model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449. https://doi.org/10.1074/jbc.273.16.9443

    Article  CAS  PubMed  Google Scholar 

  2. Takamori S, Holt M, Stenius K et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846. https://doi.org/10.1016/j.cell.2006.10.030

    Article  CAS  PubMed  Google Scholar 

  3. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372. https://doi.org/10.1016/0896-6273(95)90040-3

    Article  CAS  PubMed  Google Scholar 

  4. Jao CC, Hegde BG, Chen J et al (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci USA 105:19666–19671. https://doi.org/10.1073/pnas.0807826105

    Article  CAS  Google Scholar 

  5. Chandra S, Chen X, Rizo J et al (2003) A broken alpha-helix in folded alpha-Synuclein. J Biol Chem 278:15313–15318. https://doi.org/10.1074/jbc.M213128200

    Article  CAS  PubMed  Google Scholar 

  6. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280:9595–9603. https://doi.org/10.1074/jbc.M411805200

    Article  CAS  PubMed  Google Scholar 

  7. Lautenschläger J, Kaminski CF, Kaminski Schierle GS (2017) α-Synuclein—regulator of exocytosis, endocytosis, or both? Trends Cell Biol 27:468–479. https://doi.org/10.1016/j.tcb.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  8. Jo E, Fuller N, Rand RP et al (2002) Defective membrane interactions of familial Parkinson’s disease mutant A30P alpha-synuclein. J Mol Biol 315:799–807. https://doi.org/10.1006/jmbi.2001.5269

    Article  CAS  PubMed  Google Scholar 

  9. Choi W, Zibaee S, Jakes R et al (2004) Mutation E46K increases phospholipid binding and assembly into filaments of human alpha-synuclein. FEBS Lett 576:363–368. https://doi.org/10.1016/j.febslet.2004.09.038

    Article  CAS  PubMed  Google Scholar 

  10. Blume A, Garidel P (1999) Lipid model membranes and biomembranes. In: Kemp R (ed) Handbook of thermal analysis and calorimetry, From macromolecules to man, vol 4. Elsevier Science B.V, Amsterdam, pp 109–173

    Google Scholar 

  11. Nuscher B, Kamp F, Mehnert T et al (2004) Alpha-synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study. J Biol Chem 279:21966–21975. https://doi.org/10.1074/jbc.M401076200

    Article  CAS  PubMed  Google Scholar 

  12. Bartels T, Kim NC, Luth ES, Selkoe DJ (2014) N-alpha-acetylation of α-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation. PLoS One 9:1–10. https://doi.org/10.1371/journal.pone.0103727

    Article  CAS  Google Scholar 

  13. Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York, NY

    Book  Google Scholar 

  14. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751:119–139. https://doi.org/10.1016/j.bbapap.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  15. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890. https://doi.org/10.1038/nprot.2006.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137. https://doi.org/10.1016/0003-2697(89)90213-3

    Article  CAS  PubMed  Google Scholar 

  17. Freire E, Mayorga OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62:950A–959A. https://doi.org/10.1021/ac00217a002

    Article  CAS  Google Scholar 

  18. Fisher HF, Singh N (1995) Calorimetric methods for interpreting protein-ligand interactions. Methods Enzymol 259:194–221. https://doi.org/10.1016/0076-6879(95)59045-5

    Article  CAS  PubMed  Google Scholar 

  19. Indyk L, Fisher HF (1998) Theoretical aspects of isothermal titration calorimetry. Methods Enzymol 295:350–364. https://doi.org/10.1016/S0076-6879(98)95048-0

    Article  CAS  PubMed  Google Scholar 

  20. Noble JE, Bailey MJA (2009) Quantitation of protein. Methods Enzymol 463:73–95. https://doi.org/10.1016/S0076-6879(09)63008-1

    Article  CAS  PubMed  Google Scholar 

  21. Pace CN, Vajdos F, Fee L et al (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423. https://doi.org/10.1002/pro.5560041120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508. https://doi.org/10.1146/annurev.bb.09.060180.002343

    Article  CAS  PubMed  Google Scholar 

  23. MacDonald RC, MacDonald RI, Menco BP et al (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303. https://doi.org/10.1016/0005-2736(91)90295-J

    Article  CAS  PubMed  Google Scholar 

  24. Bangham A, Hill M, Miller N (1974) Preparation and use of liposomes as models of biological membranes. In: Korn ED (ed) Methods in membrane biology, vol 1. Plenum Press, New York, NY, pp 1–68

    Google Scholar 

  25. Galvagnion C, Buell AK, Meisl G et al (2015) Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol 11:229–234. https://doi.org/10.1038/nchembio.1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. MicroCal ITC analysis software using Origin™ MAN0577-02-EN-00 (May 2015)

    Google Scholar 

  27. Cantor CR, Schimmel PR (1980) Biophysical chemistry, Part III: The behavior of biological macromolecules. W.H. Freeman & Co., New York, NY

    Google Scholar 

  28. Wieprecht T, Seelig J (2002) Isothermal titration calorimetry for studying interactions between peptides and lipid membranes. Curr Top Membr 52:31–56

    Article  CAS  Google Scholar 

  29. Bartels T, Ahlstrom LS, Leftin A et al (2010) The N-terminus of the intrinsically disordered protein α-synuclein triggers membrane binding and helix folding. Biophys J 99:2116–2124. https://doi.org/10.1016/j.bpj.2010.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferreon ACM, Deniz AA (2007) Alpha-synuclein multistate folding thermodynamics: implications for protein misfolding and aggregation. Biochemistry 46:4499–4509. https://doi.org/10.1021/bi602461y

    Article  CAS  PubMed  Google Scholar 

  31. Chen PS, Toribara TY, Huber W (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758. https://doi.org/10.1021/ac60068a036

    Article  CAS  Google Scholar 

  32. Marsh D (2013) Handbook of lipid bilayers, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  33. Litman BJ (1972) Effect of light scattering on the circular dichroism of biological membranes. Biochemistry 11:3243–3247. https://doi.org/10.1021/bi00767a018

    Article  CAS  PubMed  Google Scholar 

  34. Mao D, Wallace BA (1984) Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles. Biochemistry 23:2667–2673. https://doi.org/10.1021/bi00307a020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.R. thanks Kelly L. Arnett and the Center for Macromolecular Interactions at the Harvard Medical School Department of Biological Chemistry and Molecular Pharmacology for assisting with CD and ITC measurements, revising this manuscript, and many helpful discussions; Alex E. Powers for helping with data collection and analysis; and Martina Astrid Rodda for editing and revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Rovere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rovere, M. (2019). Circular Dichroism and Isothermal Titration Calorimetry to Study the Interaction of α-Synuclein with Membranes. In: Bartels, T. (eds) Alpha-Synuclein. Methods in Molecular Biology, vol 1948. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9124-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9124-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9123-5

  • Online ISBN: 978-1-4939-9124-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics