Skip to main content

Co-Delivery of a Short-Hairpin RNA and a shRNA-Resistant Replacement Gene with Adeno-Associated Virus: An Allele-Independent Strategy for Autosomal-Dominant Retinal Disorders

  • Protocol
  • First Online:
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1937))

Abstract

Recombinant adeno-associated virus (rAAV) has become an important gene delivery vector for the treatment of inherited retinal degenerative diseases. Many of the mutations leading to retinal degeneration are inherited in an autosomal-dominant pattern and can produce toxic gain-of-function and/or dominant-negative effects. Here we describe an allele-independent gene therapy strategy with rAAV to treat autosomal-dominant retinal degenerative diseases. In this methodology, we co-deliver a short-hairpin RNA (shRNA) to inhibit expression of both the toxic and (WT) copies of the gene as well as an shRNA-resistant cDNA for functional gene replacement with a rAAV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. RetNet: Summaries. https://sph.uth.edu/Retnet/sum-dis.htm. Accessed 26 Oct 2017

  2. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248. https://doi.org/10.1056/NEJMoa0802315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hauswirth WW, Aleman TS, Kaushal S et al (2008) Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990. https://doi.org/10.1089/hum.2008.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobson SG, Cideciyan AV, Ratnakaram R et al (2012) Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24. https://doi.org/10.1001/archophthalmol.2011.298

    Article  CAS  PubMed  Google Scholar 

  5. OMIM Entry - * 180380 - RHODOPSIN; RHO. http://www.omim.org/entry/180380. Accessed 26 Oct 2017

  6. OMIM Entry - # 153700 - MACULAR DYSTROPHY, VITELLIFORM, 2; VMD2. http://www.omim.org/entry/153700#genotypePhenotypeCorrelations. Accessed 26 Oct 2017

  7. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333. https://doi.org/10.1016/S1097-2765(02)00541-5

    Article  CAS  PubMed  Google Scholar 

  8. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655. https://doi.org/10.1016/j.cell.2009.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284:17897–17901. https://doi.org/10.1074/jbc.R900012200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fakhr E, Zare F, Teimoori-Toolabi L (2016) Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 23:73–82. https://doi.org/10.1038/cgt.2016.4

    Article  CAS  PubMed  Google Scholar 

  11. Li C, Xiao P, Gray SJ et al (2011) Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins. Proc Natl Acad Sci U S A 108:14258–14263. https://doi.org/10.1073/pnas.1109522108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Millington-Ward S, Chadderton N, O’Reilly M et al (2011) Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19:642–649. https://doi.org/10.1038/mt.2010.293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mueller C, Tang Q, Gruntman A et al (2012) Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol Ther 20:590–600. https://doi.org/10.1038/mt.2011.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mao H, Gorbatyuk MS, Rossmiller B et al (2012) Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Hum Gene Ther 23:356–366. https://doi.org/10.1089/hum.2011.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Reilly M, Palfi A, Chadderton N et al (2007) RNA interference–mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 81:127–135. https://doi.org/10.1086/519025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baer M, Nilsen TW, Costigan C, Altman S (1990) Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P. Nucleic Acids Res 18(1):97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553. https://doi.org/10.1126/science.1068999

    Article  CAS  PubMed  Google Scholar 

  18. Ma H, Wu Y, Dang Y et al (2014) Pol III promoters to express small RNAs: delineation of transcription initiation. Mol Ther Nucleic Acids 3:e161. https://doi.org/10.1038/mtna.2014.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao Z, Harwig A, Berkhout B et al (2017) Mutation of nucleotides around the +1 position of type 3 polymerase III promoters: The effect on transcriptional activity and start site usage. Transcription 8(5):275–287. https://doi.org/10.1080/21541264.2017.1322170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grote A, Hiller K, Scheer M et al (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531. https://doi.org/10.1093/nar/gki376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang XS, Ponnazhagan S, Srivastava A (1996) Rescue and replication of adeno-associated virus type 2 as well as vector DNA sequences from recombinant plasmids containing deletions in the viral inverted terminal repeats: selective encapsidation of viral genomes in progeny virions. J Virol 70:1668–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Q, Tian W, Liu C et al (2017) Deletion of the B-B’ and C-C’ regions of inverted terminal repeats reduces rAAV productivity but increases transgene expression. Sci Rep 7(1):5432. https://doi.org/10.1038/s41598-017-04054-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Biswal MR, Han P, Zhu P et al (2017) Timing of antioxidant gene therapy: implications for treating dry AMD. Invest Ophthalmol Vis Sci 58:1237–1245. https://doi.org/10.1167/iovs.16-21272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guy J, Qi X, Koilkonda RD et al (2009) Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I subunit in the mouse visual system. Invest Ophthalmol Vis Sci 50:4205–4214. https://doi.org/10.1167/iovs.08-3214

    Article  PubMed  Google Scholar 

  26. Boye SE, Alexander JJ, Boye SL et al (2012) The human rhodopsin kinase promoter in an AAV5 vector confers rod- and cone-specific expression in the primate retina. Hum Gene Ther 23:1101–1115. https://doi.org/10.1089/hum.2012.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang GS, Schmidt M, Yan Z et al (2002) Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol 76:7651–7660. https://doi.org/10.1128/JVI.76.15.7651-7660.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Allocca M, Mussolino C, Garcia-Hoyos M et al (2007) Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 81:11372–11380. https://doi.org/10.1128/JVI.01327-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lebherz C, Maguire A, Tang W et al (2008) Novel AAV serotypes for improved ocular gene transfer. J Gene Med 10:375–382. https://doi.org/10.1002/jgm.1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scalabrino ML, Boye SL, Fransen KMH et al (2015) Intravitreal delivery of a novel AAV vector targets ON bipolar cells and restores visual function in a mouse model of complete congenital stationary night blindness. Hum Mol Genet 24:6229–6239. https://doi.org/10.1093/hmg/ddv341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kay CN, Ryals RC, Aslanidi GV et al (2013) Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS One 8(4):e62097. https://doi.org/10.1371/journal.pone.0062097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dalkara D, Byrne LC, Klimczak RR et al (2013) In vivo–directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra76–189ra76. https://doi.org/10.1126/scitranslmed.3005708

    Article  CAS  PubMed  Google Scholar 

  33. Vector production options. http://ogtc.eye.ufl.edu/2016/04/20/vector-production-options/. Accessed 16 Nov 2017

  34. Song H, Yang P-C (2010) Construction of shRNA lentiviral vector. North Am J Med Sci 2:598–601. https://doi.org/10.4297/najms.2010.2598

    Article  Google Scholar 

  35. Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431:338–342. https://doi.org/10.1038/nature02872

    Article  CAS  PubMed  Google Scholar 

  36. Cideciyan AV, Sudharsan R, Dufour VL, Massengill MT, Iwabe S, Swider M, Lisi B et al (2018) Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci 115(36):E8547. https://doi.org/10.1073/pnas.1805055115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by an F30 from the NEI (MM), an R01 from the NEI (ASL), a grant from the Bright Focus Foundation (CJI) and an unrestricted grant from the Research to Prevent Blindness (CJI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristhian J. Ildefonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Massengill, M.T., Young, B.M., Lewin, A.S., Ildefonso, C.J. (2019). Co-Delivery of a Short-Hairpin RNA and a shRNA-Resistant Replacement Gene with Adeno-Associated Virus: An Allele-Independent Strategy for Autosomal-Dominant Retinal Disorders. In: Manfredsson, F., Benskey, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 1937. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9065-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9065-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9064-1

  • Online ISBN: 978-1-4939-9065-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics