Skip to main content

Methylation Analysis Using Microarrays: Analysis and Interpretation

  • Protocol
  • First Online:
Tumor Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1908))

Abstract

This chapter discusses analysis and interpretation of large-scale Illumina DNA methylation microarray data, used in the context of cancer studies. We outline commonly used normalization procedures and list issues to consider regarding data preprocessing. Focusing on software packages for R, we describe methods for finding features in the methylation data that are of importance for generating and testing hypotheses in cancer research, like differentially methylated positions or regions and global methylation trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153. https://doi.org/10.1038/nrc1279

    Article  CAS  PubMed  Google Scholar 

  2. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522. https://doi.org/10.1016/j.ccr.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cai FF, Chen S, Wang MH et al (2016) Pyrosequencing quantified methylation level of BRCA1 promoter as prognostic factor for survival in breast cancer patient. Oncotarget 7(19):27499–27510. https://doi.org/10.18632/oncotarget.8355

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sturm D, Orr BA, Toprak UH et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164(5):1060–1072. https://doi.org/10.1016/j.cell.2016.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nordlund J, Backlin CL, Wahlberg P et al (2013) Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 14(9):r105. https://doi.org/10.1186/gb-2013-14-9-r105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bibikova M, Fan JB (2009) GoldenGate assay for DNA methylation profiling. Methods Mol Biol 507:149–163. https://doi.org/10.1007/978-1-59745-522-0_12

    Article  CAS  PubMed  Google Scholar 

  7. Moran S, Arribas C, Esteller M (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8(3):389–399. https://doi.org/10.2217/epi.15.114

    Article  CAS  PubMed  Google Scholar 

  8. Harper KN, Peters BA, Gamble MV (2013) Batch effects and pathway analysis: two potential perils in cancer studies involving DNA methylation array analysis. Cancer Epidemiol Biomarkers Prev 22(6):1052–1060. https://doi.org/10.1158/1055-9965.EPI-13-0114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du P, Zhang X, Huang CC et al (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11:587. https://doi.org/10.1186/1471-2105-11-587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilhelm-Benartzi CS, Koestler DC, Karagas MR et al (2013) Review of processing and analysis methods for DNA methylation array data. Br J Cancer 109(6):1394–1402. https://doi.org/10.1038/bjc.2013.496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morris TJ, Beck S (2015) Analysis pipelines and packages for Infinium HumanMethylation450 BeadChip (450k) data. Methods 72:3–8. https://doi.org/10.1016/j.ymeth.2014.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feber A, Guilhamon P, Lechner M et al (2014) Using high-density DNA methylation arrays to profile copy number alterations. Genome Biol 15(2):R30. https://doi.org/10.1186/gb-2014-15-2-r30

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen YA, Lemire M, Choufani S et al (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8(2):203–209. https://doi.org/10.4161/epi.23470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bourgon R, Gentleman R, Huber W (2010) Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A 107(21):9546–9551. https://doi.org/10.1073/pnas.0914005107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ong ML, Holbrook JD (2014) Novel region discovery method for Infinium 450K DNA methylation data reveals changes associated with aging in muscle and neuronal pathways. Aging Cell 13(1):142–155. https://doi.org/10.1111/acel.12159

    Article  CAS  PubMed  Google Scholar 

  16. Jaffe AE, Murakami P, Lee H et al (2012) Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol 41(1):200–209. https://doi.org/10.1093/ije/dyr238

    Article  PubMed  PubMed Central  Google Scholar 

  17. Butcher LM, Beck S (2015) Probe Lasso: a novel method to rope in differentially methylated regions with 450K DNA methylation data. Methods 72:21–28. https://doi.org/10.1016/j.ymeth.2014.10.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song F, Smith JF, Kimura MT et al (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A 102(9):3336–3341. https://doi.org/10.1073/pnas.0408436102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wan J, Oliver VF, Wang G et al (2015) Characterization of tissue-specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation. BMC Genomics 16:49. https://doi.org/10.1186/s12864-015-1271-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thon N, Kreth S, Kreth FW (2013) Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Ther 6:1363–1372. https://doi.org/10.2147/OTT.S50208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bady P, Sciuscio D, Diserens AC et al (2012) MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 124(4):547–560. https://doi.org/10.1007/s00401-012-1016-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aran D, Sabato S, Hellman A (2013) DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol 14(3):R21. https://doi.org/10.1186/gb-2013-14-3-r21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heyn H, Vidal E, Ferreira HJ et al (2016) Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biol 17:11. https://doi.org/10.1186/s13059-016-0879-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith ML, Baggerly KA, Bengtsson H et al (2013) Illuminaio: an open source IDAT parsing tool for Illumina microarrays. F1000Res 2:264. https://doi.org/10.12688/f1000research.2-264.v1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thirlwell C, Eymard M, Feber A et al (2010) Genome-wide DNA methylation analysis of archival formalin-fixed paraffin-embedded tissue using the Illumina Infinium HumanMethylation27 BeadChip. Methods 52(3):248–254. https://doi.org/10.1016/j.ymeth.2010.04.012

    Article  CAS  PubMed  Google Scholar 

  26. Moran S, Vizoso M, Martinez-Cardus A et al (2014) Validation of DNA methylation profiling in formalin-fixed paraffin-embedded samples using the Infinium HumanMethylation450 Microarray. Epigenetics 9(6):829–833. https://doi.org/10.4161/epi.28790

    Article  PubMed  PubMed Central  Google Scholar 

  27. Siegel EM, Berglund AE, Riggs BM et al (2014) Expanding epigenomics to archived FFPE tissues: an evaluation of DNA repair methodologies. Cancer Epidemiol Biomarkers Prev 23(12):2622–2631. https://doi.org/10.1158/1055-9965.EPI-14-0464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dumenil TD, Wockner LF, Bettington M et al (2014) Genome-wide DNA methylation analysis of formalin-fixed paraffin embedded colorectal cancer tissue. Genes Chromosomes Cancer 53(7):537–548. https://doi.org/10.1002/gcc.22164

    Article  CAS  PubMed  Google Scholar 

  29. Kling T, Wenger A, Beck S, Caren H (2017) Validation of the MethylationEPIC BeadChip for fresh-frozen and formalin-fixed paraffin-embedded tumours. Clin Epigenetics 9:33. https://doi.org/10.1186/s13148-017-0333-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bibikova M, Barnes B, Tsan C et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98(4):288–295. https://doi.org/10.1016/j.ygeno.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  31. Fatemi M, Pao MM, Jeong S et al (2005) Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res 33(20):e176. https://doi.org/10.1093/nar/gni180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186. https://doi.org/10.1038/ng.298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brenet F, Moh M, Funk P et al (2011) DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 6(1):e14524. https://doi.org/10.1371/journal.pone.0014524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tahiliani M, Koh KP, Shen YH et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in Mammalian DNA by MLL partner TET1. Science 324(5929):930–935. https://doi.org/10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kriaucionis S, Heintz N (2009) The nuclear DNA Base 5-hydroxymethylcytosine Is present in purkinje neurons and the brain. Science 324(5929):929–930. https://doi.org/10.1126/science.1169786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Field SF, Beraldi D, Bachman M et al (2015) Accurate measurement of 5-methylcytosine and 5-hydroxymethylcytosine in human cerebellum DNA by oxidative bisulfite on an array (OxBS-array). PLoS One 10(2):e0118202. https://doi.org/10.1371/journal.pone.0118202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Carén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kling, T., Carén, H. (2019). Methylation Analysis Using Microarrays: Analysis and Interpretation. In: Murray, S. (eds) Tumor Profiling. Methods in Molecular Biology, vol 1908. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9004-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9004-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9002-3

  • Online ISBN: 978-1-4939-9004-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics