Skip to main content

Web-Based Tools for Polypharmacology Prediction

  • Protocol
  • First Online:
Systems Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1888))

Abstract

Drug promiscuity or polypharmacology is the ability of small molecules to interact with multiple protein targets simultaneously. In drug discovery, understanding the polypharmacology of potential drug molecules is crucial to improve their efficacy and safety, and to discover the new therapeutic potentials of existing drugs. Over the past decade, several computational methods have been developed to study the polypharmacology of small molecules, many of which are available as Web services. In this chapter, we review some of these Web tools focusing on ligand based approaches. We highlight in particular our recently developed polypharmacology browser (PPB) and its application for finding the side targets of a new inhibitor of the TRPV6 calcium channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    Article  CAS  PubMed  Google Scholar 

  2. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57(19):7874–7887

    Article  CAS  PubMed  Google Scholar 

  3. Lavecchia A, Cerchia C (2016) In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today 21(2):288–298

    Article  CAS  PubMed  Google Scholar 

  4. Mestres J, Gregori-Puigjane E, Valverde S, Sole RV (2009) The topology of drug-target interaction networks: implicit dependence on drug properties and target families. Mol BioSyst 5(9):1051–1057

    Article  CAS  PubMed  Google Scholar 

  5. Cook D, Brown D, Alexander R, March R, Morgan P, Satterthwaite G, Pangalos MN (2014) Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat Rev Drug Discov 13(6):419–431

    Article  CAS  PubMed  Google Scholar 

  6. Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Cote S, Shoichet BK, Urban L (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486(7403):361–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Siramshetty VB, Nickel J, Omieczynski C, Gohlke B-O, Drwal MN, Preissner R (2016) WITHDRAWN—a resource for withdrawn and discontinued drugs. Nucleic Acids Res 44(D1):D1080–D1086

    Article  CAS  PubMed  Google Scholar 

  8. Wermuth CG (2006) Selective optimization of side activities: the SOSA approach. Drug Discov Today 11(3):160–164

    Article  CAS  PubMed  Google Scholar 

  9. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KLH, Edwards DD, Shoichet BK, Roth BL (2009) Predicting new molecular targets for known drugs. Nature 462(7270):175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang X-P, Norval S, Sassano MF, Shin AI, Webster LA, Simeons FRC, Stojanovski L, Prat A, Seidah NG, Constam DB, Bickerton GR, Read KD, Wetsel WC, Gilbert IH, Roth BL, Hopkins AL (2012) Automated design of ligands to polypharmacological profiles. Nature 492(7428):215–220

    Article  CAS  PubMed  Google Scholar 

  11. Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV, Zimmer S, Young MP, Jenkins JL, Glick M, Glen RC, Bender A (2011) From in silico target prediction to multi-target drug design: Current databases, methods and applications. J Proteome 74(12):2554–2574

    Article  CAS  Google Scholar 

  12. Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Pujadas G, Garcia-Vallve S (2015) Tools for in silico target fishing. Methods 71:98–103

    Article  PubMed  Google Scholar 

  13. Awale M, Reymond J-L (2017) The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data. J Cheminform 9(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yao Z-J, Dong J, Che Y-J, Zhu M-F, Wen M, Wang N-N, Wang S, Lu A-P, Cao D-S (2016) TargetNet: a web service for predicting potential drug–target interaction profiling via multi-target SAR models. J Comput Aided Mol Des 30(5):413–424

    Article  CAS  PubMed  Google Scholar 

  15. Kringelum J, Kjaerulff SK, Brunak S, Lund O, Oprea TI, Taboureau O (2016) ChemProt-3.0: a global chemical biology diseases mapping. Database 2016

    Google Scholar 

  16. Liu X, Gao Y, Peng J, Xu Y, Wang Y, Zhou N, Xing J, Luo X, Jiang H, Zheng M (2015) TarPred: a web application for predicting therapeutic and side effect targets of chemical compounds. Bioinformatics 31(12):2049–2051

    Article  CAS  PubMed  Google Scholar 

  17. Reker D, Rodrigues T, Schneider P, Schneider G (2014) Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci 111(11):4067–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(W1):W32–W38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang L, Ma C, Wipf P, Liu H, Su W, Xie X-Q (2013) TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database. AAPS J 15(2):395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gong J, Cai C, Liu X, Ku X, Jiang H, Gao D, Li H (2013) ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics 29(14):1827–1829

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Vogt I, Haque T, Campillos M (2013) HitPick: a web server for hit identification and target prediction of chemical screenings. Bioinformatics 29(15):1910–1912

    Article  CAS  PubMed  Google Scholar 

  22. Nickel J, Gohlke B-O, Erehman J, Banerjee P, Rong WW, Goede A, Dunkel M, Preissner R (2014) SuperPred: update on drug classification and target prediction. Nucleic Acids Res 42(W1):W26–W31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25(2):197–206

    Article  CAS  PubMed  Google Scholar 

  24. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16(8):747–748

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Liang L, Yin Z, Lin J (2016) Improving chemical similarity ensemble approach in target prediction. J Cheminform 8(1):1–10

    Article  Google Scholar 

  26. Wang X, Pan C, Gong J, Liu X, Li H (2016) Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J Chem Inf Model 56(6):1175–1183

    Article  CAS  PubMed  Google Scholar 

  27. Cao R, Wang Y (2016) Predicting molecular targets for small-molecule drugs with a ligand-based interaction fingerprint approach. ChemMedChem 11(12):1352–1361

    Article  CAS  PubMed  Google Scholar 

  28. Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, Bender A (2015) Target prediction utilising negative bioactivity data covering large chemical space. J Cheminform 7:51

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lusci A, Fooshee D, Browning M, Swamidass J, Baldi P (2015) Accurate and efficient target prediction using a potency-sensitive influence-relevance voter. J Cheminform 7(1):1–13

    Article  Google Scholar 

  30. Liu X, Xu Y, Li S, Wang Y, Peng J, Luo C, Luo X, Zheng M, Chen K, Jiang H (2014) In Silico target fishing: addressing a “Big Data” problem by ligand-based similarity rankings with data fusion. J Cheminform 6(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  31. Alvarsson J, Eklund M, Engkvist O, Spjuth O, Carlsson L, Wikberg JES, Noeske T (2014) Ligand-based target prediction with signature fingerprints. J Chem Inf Model 54(10):2647–2653

    Article  CAS  PubMed  Google Scholar 

  32. Mavridis L, Mitchell JB (2013) Predicting the protein targets for athletic performance-enhancing substances. J Cheminform 5(1):1–13

    Article  Google Scholar 

  33. Koutsoukas A, Lowe R, KalantarMotamedi Y, Mussa HY, Klaffke W, Mitchell JBO, Glen RC, Bender A (2013) In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass naïve bayes and parzen-rosenblatt window. J Chem Inf Model 53(8):1957–1966

    Article  CAS  PubMed  Google Scholar 

  34. Pérez-Nueno VI, Venkatraman V, Mavridis L, Ritchie DW (2012) Detecting drug promiscuity using gaussian ensemble screening. J Chem Inf Model 52(8):1948–1961

    Article  PubMed  Google Scholar 

  35. AbdulHameed MDM, Chaudhury S, Singh N, Sun H, Wallqvist A, Tawa GJ (2012) Exploring polypharmacology using a ROCS-based target fishing approach. J Chem Inf Model 52(2):492–505

    Article  CAS  PubMed  Google Scholar 

  36. Wale N, Karypis G (2009) Target fishing for chemical compounds using target-ligand activity data and ranking based methods. J Chem Inf Model 49(10):2190–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nidhi GM, Davies JW, Jenkins JL (2006) Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases. J Chem Inf Model 46(3):1124–1133

    Article  CAS  PubMed  Google Scholar 

  38. Peragovics Á, Simon Z, Tombor L, Jelinek B, Hári P, Czobor P, Málnási-Csizmadia A (2013) Virtual affinity fingerprints for target fishing: a new application of drug profile matching. J Chem Inf Model 53(1):103–113

    Article  CAS  PubMed  Google Scholar 

  39. Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38(suppl 2):W609–W614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J, Wang X, Jiang H (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34(suppl 2):W219–W224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(D1):D1091–D1097

    Article  CAS  PubMed  Google Scholar 

  42. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44(Database issue):D1045–D1053

    Article  CAS  PubMed  Google Scholar 

  43. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107

    Article  CAS  PubMed  Google Scholar 

  44. Olah M, Rad R, Ostopovici L, Bora A, Hadaruga N, Hadaruga D, Moldovan R, Fulias A, Mractc M, Oprea TI (2008) WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery, chemical biology: from small molecules to systems biology and drug design. Wiley-VCH Verlag GmbH:760–786

    Google Scholar 

  45. Rose PW, Prlić A, Bi C, Bluhm WF, Christie CH, Dutta S, Green RK, Goodsell DS, Westbrook JD, Woo J, Young J, Zardecki C, Berman HM, Bourne PE, Burley SK (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43(D1):D345–D356

    Article  CAS  PubMed  Google Scholar 

  46. Ertl P, Selzer P, Mühlbacher J (2004) Web-based cheminformatics tools deployed via corporate Intranets. Drug Discov Today Biosilico 2(5):201–207

    Article  CAS  Google Scholar 

  47. Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45(19):4350–4358

    Article  CAS  PubMed  Google Scholar 

  48. Jenkins JL, Bender A, Davies JW (2006) In silico target fishing: Predicting biological targets from chemical structure. Drug Discov Today Technol 3(4):413–421

    Article  Google Scholar 

  49. Hagadone TR (1992) Molecular substructure similarity searching: efficient retrieval in two-dimensional structure databases. J Chem Inf Comput Sci 32(5):515–521

    Article  CAS  Google Scholar 

  50. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754

    Article  CAS  PubMed  Google Scholar 

  51. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42(6):1273–1280

    Article  CAS  PubMed  Google Scholar 

  52. Schneider G, Neidhart W, Giller T, Schmid G (1999) “Scaffold-Hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed 38(19):2894–2896

    Article  CAS  Google Scholar 

  53. Awale M, Reymond J-L (2014) Atom Pair 2D-fingerprints perceive 3D-molecular shape and pharmacophores for very fast virtual screening of ZINC and GDB-17. J Chem Inf Model 54(7):1892–1907

    Article  CAS  PubMed  Google Scholar 

  54. Ballester PJ, Richards WG (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28(10):1711–1723

    Article  CAS  PubMed  Google Scholar 

  55. Armstrong MS, Morris GM, Finn PW, Sharma R, Moretti L, Cooper RI, Richards WG (2010) ElectroShape: fast molecular similarity calculations incorporating shape, chirality and electrostatics. J Comput Aided Mol Des 24(9):789–801

    Article  CAS  PubMed  Google Scholar 

  56. Grant JA, Gallardo MA, Pickup BT (1996) A fast method of molecular shape comparison: A simple application of a Gaussian description of molecular shape. J Comput Chem 17(14):1653–1666

    Article  CAS  Google Scholar 

  57. Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82

    Article  CAS  PubMed  Google Scholar 

  58. Willett P (2013) Fusing similarity rankings in ligand-based virtual screening. Comput Struct Biotechnol J 5(6):1–6

    Article  Google Scholar 

  59. Baldi P, Nasr R (2010) When is chemical similarity significant? The statistical distribution of chemical similarity scores and its extreme values. J Chem Inf Model 50(7):1205–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mitchell JBO (2014) Machine learning methods in chemoinformatics. Wiley Interdiscip Rev Comput Mol Sci 4(5):468–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nigsch F, Bender A, Jenkins JL, Mitchell JBO (2008) Ligand-target prediction using winnow and naive bayesian algorithms and the implications of overall performance statistics. J Chem Inf Model 48(12):2313–2325

    Article  CAS  PubMed  Google Scholar 

  62. Simonin C, Awale M, Brand M, van Deursen R, Schwartz J, Fine M, Kovacs G, Häfliger P, Gyimesi G, Sithampari A, Charles R-P, Hediger MA, Reymond J-L (2015) Optimization of TRPV6 calcium channel inhibitors using a 3D ligand-based virtual screening method. Angew Chem Int Ed 54(49):14748–14752

    Article  CAS  Google Scholar 

  63. Nguyen KT, Blum LC, van Deursen R, Reymond J-L (2009) Classification of organic molecules by molecular quantum numbers. ChemMedChem 4(11):1803–1805

    Article  CAS  PubMed  Google Scholar 

  64. Schwartz J, Awale M, Reymond J-L (2013) SMIfp (SMILES fingerprint) chemical space for virtual screening and visualization of large databases of organic molecules. J Chem Inf Model 53(8):1979–1989

    Article  CAS  PubMed  Google Scholar 

  65. Filimonov D, Poroikov V, Borodina Y, Gloriozova T (1999) Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J Chem Inf Comput Sci 39(4):666–670

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported financially by the Swiss National Science Foundation, NCCR TransCure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Reymond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Awale, M., Reymond, JL. (2019). Web-Based Tools for Polypharmacology Prediction. In: Ziegler, S., Waldmann, H. (eds) Systems Chemical Biology. Methods in Molecular Biology, vol 1888. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8891-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8891-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8890-7

  • Online ISBN: 978-1-4939-8891-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics