Skip to main content

Epigenetic Basis of Circadian Rhythm Disruption in Cancer

  • Protocol
  • First Online:
Cancer Epigenetics for Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1856))

Abstract

Self-sustained and synchronized to environmental stimuli, circadian clocks are under genetic and epigenetic regulation. Recent findings have greatly increased our understanding of epigenetic plasticity governed by circadian clock. Thus, the link between circadian clock and epigenetic machinery is reciprocal. Circadian clock can affect epigenetic features including genomic DNA methylation, noncoding RNA, mainly miRNA expression, and histone modifications resulted in their 24-h rhythms. Concomitantly, these epigenetic events can directly modulate cyclic system of transcription and translation of core circadian genes and indirectly clock output genes. Significant findings interlocking circadian clock, epigenetics, and cancer have been revealed, particularly in breast, colorectal, and blood cancers. Aberrant methylation of circadian gene promoter regions and miRNA expression affected circadian gene expression, together with 24-h expression oscillation pace have been frequently observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 09 March 2019

    The Chapter was inadvertently published with incorrect figure (Fig. 1). The same has been corrected in the chapter.

References

  1. Terzibasi-Tozzini E, Martinez-Nicolas A, Lucas-Sanchez A (2017) The clock is ticking. Ageing of the circadian system: from physiology to cell cycle. Semin Cell Dev Biol 70:164–176. https://doi.org/10.1016/j.semcdb.2017.06.011

    Google Scholar 

  2. Webb AB, Oates AC (2016) Timing by rhythms: daily clocks and developmental rulers. Dev Growth Differ 58(1):43–58. https://doi.org/10.1111/dgd.12242

    Google Scholar 

  3. Delezie J, Challet E (2011) Interactions between metabolism and circadian clocks: reciprocal disturbances. Ann N Y Acad Sci 1243:30–46

    Google Scholar 

  4. Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676

    Google Scholar 

  5. Ukai H, Ueda HR (2010) Systems biology of mammalian circadian clocks. Annu Rev Physiol 72:579–603

    Google Scholar 

  6. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280(5369):1564–1569

    Google Scholar 

  7. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017

    Google Scholar 

  8. Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96(1):57–68

    Google Scholar 

  9. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398(6728):627–630

    Google Scholar 

  10. Hogenesch JB, Gu YZ, Moran SM, Shimomura K, Radcliffe LA, Takahashi JS, Bradfield CA (2000) The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J Neurosci 20(13):Rc83

    Google Scholar 

  11. Zhou YD, Barnard M, Tian H, Li X, Ring HZ, Francke U, Shelton J, Richardson J, Russell DW, McKnight SL (1997) Molecular characterization of two mammalian bHLH-PAS domain proteins selectively expressed in the central nervous system. Proc Natl Acad Sci U S A 94(2):713–718

    Google Scholar 

  12. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260

    Google Scholar 

  13. Akashi M, Takumi T (2005) The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 12(5):441–448

    Google Scholar 

  14. Stratmann M, Schibler U (2006) Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythm 21(6):494–506

    Google Scholar 

  15. Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR (2011) Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144(2):268–281

    Google Scholar 

  16. Korencic A, Bordyugov G, Kosir R, Rozman D, Golicnik M, Herzel H (2012) The interplay of cis-regulatory elements rules circadian rhythms in mouse liver. PLoS One 7(11):e46835

    Google Scholar 

  17. Korencic A, Kosir R, Bordyugov G, Lehmann R, Rozman D, Herzel H (2014) Timing of circadian genes in mammalian tissues. Sci Rep 4:5782. https://doi.org/10.1038/srep05782

    Google Scholar 

  18. Pett JP, Korencic A, Wesener F, Kramer A, Herzel H (2016) Feedback loops of the mammalian circadian clock constitute Repressilator. PLoS Comput Biol 12(12):e1005266. https://doi.org/10.1371/journal.pcbi.1005266

    Google Scholar 

  19. Akashi M, Okamoto A, Tsuchiya Y, Todo T, Nishida E, Node K (2014) A positive role for PERIOD in mammalian circadian gene expression. Cell Rep 7(4):1056–1064

    Google Scholar 

  20. Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15(8):995–1006

    Google Scholar 

  21. Yamaguchi S, Mitsui S, Yan L, Yagita K, Miyake S, Okamura H (2000) Role of DBP in the circadian oscillatory mechanism. Mol Cell Biol 20(13):4773–4781

    Google Scholar 

  22. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15:R271–R277 Spec No 2. https://doi.org/10.1093/hmg/ddl207

    Google Scholar 

  23. Stojkovic K, Wing SS, Cermakian N (2014) A central role for ubiquitination within a circadian clock protein modification code. Front Mol Neurosci 7:69. https://doi.org/10.3389/fnmol.2014.00069

    Google Scholar 

  24. Mazzoccoli G, Laukkanen MO, Vinciguerra M, Colangelo T, Colantuoni V (2016) A timeless link between circadian patterns and disease. Trends Mol Med 22(1):68–81

    Google Scholar 

  25. Hatanaka F, Matsubara C, Myung J, Yoritaka T, Kamimura N, Tsutsumi S, Kanai A, Suzuki Y, Sassone-Corsi P, Aburatani H, Sugano S, Takumi T (2010) Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol Cell Biol 30(24):5636–5648

    Google Scholar 

  26. Yi CH, Zheng T, Leaderer D, Hoffman A, Zhu Y (2009) Cancer-related transcriptional targets of the circadian gene NPAS2 identified by genome-wide ChIP-on-chip analysis. Cancer Lett 284(2):149–156

    Google Scholar 

  27. Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F (2011) Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol 9(2):e1000595. https://doi.org/10.1371/journal.pbio.1000595

    Google Scholar 

  28. Menet JS, Pescatore S, Rosbash M (2014) CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev 28(1. United States):8–13. https://doi.org/10.1101/gad.228536.113

    Google Scholar 

  29. Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13(2):125–137

    Google Scholar 

  30. Eckel-Mahan K, Sassone-Corsi P (2013) Metabolism and the circadian clock converge. Physiol Rev 93(1):107–135

    Google Scholar 

  31. Ptitsyn AA, Zvonic S, Conrad SA, Scott LK, Mynatt RL, Gimble JM (2006) Circadian clocks are resounding in peripheral tissues. PLoS Comput Biol 2(3):e16. https://doi.org/10.1371/journal.pcbi.0020016

    Google Scholar 

  32. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320

    Google Scholar 

  33. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, Gant TW, Hastings MH, Kyriacou CP (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12(7):540–550

    Google Scholar 

  34. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111(45):16219–16224

    Google Scholar 

  35. Archer SN, Laing EE, Moller-Levet CS, van der Veen DR, Bucca G, Lazar AS, Santhi N, Slak A, Kabiljo R, von Schantz M, Smith CP, Dijk DJ (2014) Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 111(6):E682–E691

    Google Scholar 

  36. Moller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R, Lo JC, Santhi N, von Schantz M, Smith CP, Dijk DJ (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110(12):E1132–E1141

    Google Scholar 

  37. Simo-Riudalbas L, Esteller M (2014) Cancer genomics identifies disrupted epigenetic genes. Hum Genet 133(6):713–725

    Google Scholar 

  38. Powell WT, LaSalle JM (2015) Epigenetic mechanisms in diurnal cycles of metabolism and neurodevelopment. Hum Mol Genet 24(R1):R1–R9. https://doi.org/10.1093/hmg/ddv234

    Google Scholar 

  39. Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354

    Google Scholar 

  40. Brown SE, Fraga MF, Weaver IC, Berdasco M, Szyf M (2007) Variations in DNA methylation patterns during the cell cycle of HeLa cells. Epigenetics 2(1):54–65

    Google Scholar 

  41. Bonsch D, Hothorn T, Krieglstein C, Koch M, Nehmer C, Lenz B, Reulbach U, Kornhuber J, Bleich S (2007) Daily variations of homocysteine concentration may influence methylation of DNA in normal healthy individuals. Chronobiol Int 24(2):315–326

    Google Scholar 

  42. Xia L, Ma S, Zhang Y, Wang T, Zhou M, Wang Z, Zhang J (2015) Daily variation in global and local DNA methylation in mouse livers. PLoS One 10(2):e0118101. https://doi.org/10.1371/journal.pone.0118101

    Google Scholar 

  43. Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A, Maier B, Kramer A, Brown SA (2014) Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat Neurosci 17(3):377–382

    Google Scholar 

  44. Vollmers C, Schmitz RJ, Nathanson J, Yeo G, Ecker JR, Panda S (2012) Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab 16(6):833–845

    Google Scholar 

  45. Massart R, Freyburger M, Suderman M, Paquet J, El Helou J, Belanger-Nelson E, Rachalski A, Koumar OC, Carrier J, Szyf M, Mongrain V (2014) The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Transl Psychiatry 4:e347. https://doi.org/10.1038/tp.2013.120

    Google Scholar 

  46. Zhu Y, Stevens RG, Hoffman AE, Tjonneland A, Vogel UB, Zheng T, Hansen J (2011) Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int 28(10):852–861

    Google Scholar 

  47. Bhatti P, Zhang Y, Song X, Makar KW, Sather CL, Kelsey KT, Houseman EA, Wang P (2014) Nightshift work and genome-wide DNA methylation. Chronobiol Int 32:103–112. https://doi.org/10.3109/07420528.2014.956362

    Google Scholar 

  48. Schwimmer H, Metzer A, Pilosof Y, Szyf M, Machnes ZM, Fares F, Harel O, Haim A (2014) Light at night and melatonin have opposite effects on breast cancer tumors in mice assessed by growth rates and global DNA methylation. Chronobiol Int 31(1):144–150

    Google Scholar 

  49. Lim AS, Srivastava GP, Yu L, Chibnik LB, Xu J, Buchman AS, Schneider JA, Myers AJ, Bennett DA, De Jager PL (2014) 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet 10(11):e1004792. https://doi.org/10.1371/journal.pgen.1004792

    Google Scholar 

  50. Krishnaiah SY, Wu G, Altman BJ, Growe J, Rhoades SD, Coldren F, Venkataraman A, Olarerin-George AO, Francey LJ, Mukherjee S, Girish S, Selby CP, Cal S, Er U, Sianati B, Sengupta A, Anafi RC, Kavakli IH, Sancar A, Baur JA, Dang CV, Hogenesch JB, Weljie AM (2017) Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metab 25(4):961–974.e964

    Google Scholar 

  51. Flavahan WA, Gaskell E, Bernstein BE (2017) Epigenetic plasticity and the hallmarks of cancer. Science 357(6348):eaal2380. https://doi.org/10.1126/science.aal2380

    Google Scholar 

  52. Unsal-Kaçmaz K, Mullen TE, Kaufmann WK, Sancar A (2005) Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol 25(8):3109–3116

    Google Scholar 

  53. Gauger MA, Sancar A (2005) Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res 65(15):6828–6834

    Google Scholar 

  54. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259

    Google Scholar 

  55. Kettner NM, Katchy CA, Fu L (2014) Circadian gene variants in cancer. Ann Med 46(4):208–220

    Google Scholar 

  56. Mao Y, Fu A, Hoffman AE, Jacobs DI, Jin M, Chen K, Zhu Y (2015) The circadian gene CRY2 is associated with breast cancer aggressiveness possibly via epigenomic modifications. Tumour Biol 36(5):3533–3539

    Google Scholar 

  57. Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26(7):1241–1246

    Google Scholar 

  58. Kuo SJ, Chen ST, Yeh KT, Hou MF, Chang YS, Hsu NC, Chang JG (2009) Disturbance of circadian gene expression in breast cancer. Virchows Arch 454(4):467–474

    Google Scholar 

  59. Hoffman AE, Zheng T, Yi CH, Stevens RG, Ba Y, Zhang Y, Leaderer D, Holford T, Hansen J, Zhu Y (2010) The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prev Res (Phila) 3(4):539–548

    Google Scholar 

  60. Li L, Lee KM, Han W, Choi JY, Lee JY, Kang GH, Park SK, Noh DY, Yoo KY, Kang D (2010) Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet 19(21):4273–4277

    Google Scholar 

  61. Liu L, Shen H, Wang Y (2017) CRY2 is suppressed by FOXM1 mediated promoter hypermethylation in breast cancer. Biochem Biophys Res Commun 490(1):44–50

    Google Scholar 

  62. Hoffman AE, Yi CH, Zheng T, Stevens RG, Leaderer D, Zhang Y, Holford TR, Hansen J, Paulson J, Zhu Y (2010) CLOCK in breast tumorigenesis: genetic, epigenetic, and transcriptional profiling analyses. Cancer Res 70(4):1459–1468

    Google Scholar 

  63. Hoffman AE, Zheng T, Ba Y, Stevens RG, Yi CH, Leaderer D, Zhu Y (2010) Phenotypic effects of the circadian gene Cryptochrome 2 on cancer-related pathways. BMC Cancer 10:110. https://doi.org/10.1186/1471-2407-10-110

    Google Scholar 

  64. Fu A, Leaderer D, Zheng T, Hoffman AE, Stevens RG, Zhu Y (2012) Genetic and epigenetic associations of circadian gene TIMELESS and breast cancer risk. Mol Carcinog 51(12):923–929

    Google Scholar 

  65. Yang M, Kim HS, Cho MY (2014) Different methylation profiles between intestinal and diffuse sporadic gastric carcinogenesis. Clin Res Hepatol Gastroenterol 38(5):613–620

    Google Scholar 

  66. Tahara T, Maegawa S, Chung W, Garriga J, Jelinek J, Estecio MR, Shibata T, Hirata I, Arisawa T, Issa JP (2013) Examination of whole blood DNA methylation as a potential risk marker for gastric cancer. Cancer Prev Res (Phila) 6(10):1093–1100

    Google Scholar 

  67. Alexander M, Burch JB, Steck SE, Chen CF, Hurley TG, Cavicchia P, Shivappa N, Guess J, Zhang H, Youngstedt SD, Creek KE, Lloyd S, Jones K, Hebert JR (2017) Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Color Dis 32(2):183–192

    Google Scholar 

  68. Tomita T, Kurita R, Onishi Y (2017) Epigenetic regulation of the circadian clock: role of 5-aza-2′-deoxycytidine. Biosci Rep 37(3):BSR20170053. https://doi.org/10.1042/bsr20170053

    Google Scholar 

  69. Hsu MC, Huang CC, Choo KB, Huang CJ (2007) Uncoupling of promoter methylation and expression of Period1 in cervical cancer cells. Biochem Biophys Res Commun 360(1):257–262

    Google Scholar 

  70. Shih MC, Yeh KT, Tang KP, Chen JC, Chang JG (2006) Promoter methylation in circadian genes of endometrial cancers detected by methylation-specific PCR. Mol Carcinog 45(10):732–740

    Google Scholar 

  71. Yeh KT, Yang MY, Liu TC, Chen JC, Chan WL, Lin SF, Chang JG (2005) Abnormal expression of period 1 (PER1) in endometrial carcinoma. J Pathol 206(1):111–120

    Google Scholar 

  72. Neumann O, Kesselmeier M, Geffers R, Pellegrino R, Radlwimmer B, Hoffmann K, Ehemann V, Schemmer P, Schirmacher P, Lorenzo Bermejo J, Longerich T (2012) Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology 56(5):1817–1827

    Google Scholar 

  73. Lin YM, Chang JH, Yeh KT, Yang MY, Liu TC, Lin SF, Su WW, Chang JG (2008) Disturbance of circadian gene expression in hepatocellular carcinoma. Mol Carcinog 47(12):925–933

    Google Scholar 

  74. Gery S, Komatsu N, Kawamata N, Miller CW, Desmond J, Virk RK, Marchevsky A, McKenna R, Taguchi H, Koeffler HP (2007) Epigenetic silencing of the candidate tumor suppressor gene Per1 in non-small cell lung cancer. Clin Cancer Res 13(5):1399–1404

    Google Scholar 

  75. Wang F, Luo Y, Li C, Chen L (2014) Correlation between deregulated expression of PER2 gene and degree of glioma malignancy. Tumori 100(6):e266–e272. https://doi.org/10.1700/1778.19292

    Google Scholar 

  76. Fan W, Chen X, Li C, Chen L, Liu P, Chen Z (2014) The analysis of deregulated expression and methylation of the PER2 genes in gliomas. J Cancer Res Ther 10(3):636–640

    Google Scholar 

  77. Hanoun M, Eisele L, Suzuki M, Greally JM, Huttmann A, Aydin S, Scholtysik R, Klein-Hitpass L, Duhrsen U, Durig J (2012) Epigenetic silencing of the circadian clock gene CRY1 is associated with an indolent clinical course in chronic lymphocytic leukemia. PLoS One 7(3):e34347. https://doi.org/10.1371/journal.pone.0034347

    Google Scholar 

  78. Taniguchi H, Fernandez AF, Setien F, Ropero S, Ballestar E, Villanueva A, Yamamoto H, Imai K, Shinomura Y, Esteller M (2009) Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res 69(21):8447–8454

    Google Scholar 

  79. Yang MY, Chang JG, Lin PM, Tang KP, Chen YH, Lin HY, Liu TC, Hsiao HH, Liu YC, Lin SF (2006) Downregulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3. Cancer Sci 97(12):1298–1307

    Google Scholar 

  80. Yeh CM, Shay J, Zeng TC, Chou JL, Huang TH, Lai HC, Chan MW (2014) Epigenetic silencing of ARNTL, a circadian gene and potential tumor suppressor in ovarian cancer. Int J Oncol 45(5):2101–2107

    Google Scholar 

  81. Nakatome M, Orii M, Hamajima M, Hirata Y, Uemura M, Hirayama S, Isobe I (2011) Methylation analysis of circadian clock gene promoters in forensic autopsy specimens. Legal medicine (Tokyo, Japan) 13(4):205–209

    Google Scholar 

  82. Biswas S, Rao CM (2017) Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2017.02.011

  83. Liz J, Esteller M (2016) lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta 1859(1):169–176

    Google Scholar 

  84. Na YJ, Sung JH, Lee SC, Lee YJ, Choi YJ, Park WY, Shin HS, Kim JH (2009) Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm. Exp Mol Med 41(9):638–647

    Google Scholar 

  85. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54(5):813–829

    Google Scholar 

  86. Alvarez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, Sonenberg N, Cheng HY (2011) miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet 20(4):731–751

    Google Scholar 

  87. Nagel R, Clijsters L, Agami R (2009) The miRNA-192/194 cluster regulates the period gene family and the circadian clock. FEBS J 276(19):5447–5455

    Google Scholar 

  88. Chen R, D'Alessandro M, Lee C (2013) miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol 23(20):1959–1968

    Google Scholar 

  89. Zhou W, Li Y, Wang X, Wu L, Wang Y (2011) MiR-206-mediated dynamic mechanism of the mammalian circadian clock. BMC Syst Biol 5:141. https://doi.org/10.1186/1752-0509-5-141

    Google Scholar 

  90. Chacolla-Huaringa R, Moreno-Cuevas J, Trevino V, Scott SP (2017) Entrainment of breast cell lines results in rhythmic fluctuations of MicroRNAs. Int J Mol Sci 18:7. https://doi.org/10.3390/ijms18071499

    Google Scholar 

  91. Kochan DZ, Ilnytskyy Y, Golubov A, Deibel SH, McDonald RJ, Kovalchuk O (2015) Circadian disruption-induced microRNAome deregulation in rat mammary gland tissues. Oncoscience 2(4):428–442

    Google Scholar 

  92. Han Y, Meng F, Venter J, Wu N, Wan Y, Standeford H, Francis H, Meininger C, Greene J Jr, Trzeciakowski JP, Ehrlich L, Glaser S, Alpini G (2016) miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. J Hepatol 64(6):1295–1304

    Google Scholar 

  93. Shi F, Chen X, Fu A, Hansen J, Stevens R, Tjonneland A, Vogel UB, Zheng T, Zhu Y (2013) Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers. Environ Mol Mutagen 54(6):406–413

    Google Scholar 

  94. Lee SE, Kim SJ, Youn JP, Hwang SY, Park CS, Park YS (2011) MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J Pineal Res 51(3):345–352

    Google Scholar 

  95. Mazzoccoli G, Colangelo T, Panza A, Rubino R, Tiberio C, Palumbo O, Carella M, Trombetta D, Gentile A, Tavano F, Valvano MR, Storlazzi CT, Macchia G, De Cata A, Bisceglia G, Capocefalo D, Colantuoni V, Sabatino L, Piepoli A, Mazza T (2016) Analysis of clock gene-miRNA correlation networks reveals candidate drivers in colorectal cancer. Oncotarget 7(29):45444–45461

    Google Scholar 

  96. Li A, Lin X, Tan X, Yin B, Han W, Zhao J, Yuan J, Qiang B, Peng X (2013) Circadian gene clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor-suppressive miR-124. FEBS Lett 587(15):2455–2460

    Google Scholar 

  97. Wu S, Fesler A, Ju J (2016) Implications of circadian rhythm regulation by microRNAs in colorectal Cancer. Cancer Transl Med 2(1):1–6

    Google Scholar 

  98. Hong Z, Feng Z, Sai Z, Tao S (2014) PER3, a novel target of miR-103, plays a suppressive role in colorectal cancer in vitro. BMB Rep 47(9):500–505

    Google Scholar 

  99. Cui M, Zheng M, Sun B, Wang Y, Ye L, Zhang X (2015) A long noncoding RNA perturbs the circadian rhythm of hepatoma cells to facilitate hepatocarcinogenesis. Neoplasia 17(1):79–88

    Google Scholar 

  100. Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421(6919):177–182

    Google Scholar 

  101. Valekunja UK, Edgar RS, Oklejewicz M, van der Horst GT, O'Neill JS, Tamanini F, Turner DJ, Reddy AB (2013) Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci U S A 110(4):1554–1559

    Google Scholar 

  102. Crosio C, Cermakian N, Allis CD, Sassone-Corsi P (2000) Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3(12):1241–1247

    Google Scholar 

  103. Naruse Y, Oh-hashi K, Iijima N, Naruse M, Yoshioka H, Tanaka M (2004) Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol 24(14):6278–6287

    Google Scholar 

  104. Curtis AM, Seo SB, Westgate EJ, Rudic RD, Smyth EM, Chakravarti D, FitzGerald GA, McNamara P (2004) Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem 279(8):7091–7097

    Google Scholar 

  105. Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17(12):1414–1421

    Google Scholar 

  106. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317–328

    Google Scholar 

  107. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+−dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134(2):329–340

    Google Scholar 

  108. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125(3):497–508

    Google Scholar 

  109. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090

    Google Scholar 

  110. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hickey G, Hinrichs AS, Hubley R, Karolchik D, Learned K, Lee BT, Li CH, Miga KH, Nguyen N, Paten B, Raney BJ, Smit AF, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ (2015) The UCSC genome browser database: 2015 update. Nucleic Acids Res 43(Database issue):D670–D681. https://doi.org/10.1093/nar/gku1177

    Google Scholar 

  111. Suzuki A, Wakaguri H, Yamashita R, Kawano S, Tsuchihara K, Sugano S, Suzuki Y, Nakai K (2015) DBTSS as an integrative platform for transcriptome, epigenome and genome sequence variation data. Nucleic Acids Res 43(Database issue):D87–D91. https://doi.org/10.1093/nar/gku1080

    Google Scholar 

  112. Yamashita R, Sugano S, Suzuki Y, Nakai K (2012) DBTSS: DataBase of transcriptional start sites progress report in 2012. Nucleic Acids Res 40(Database issue):D150–D154. https://doi.org/10.1093/nar/gkr1005

    Google Scholar 

  113. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41(Database issue):D36–D42. https://doi.org/10.1093/nar/gks1195

    Google Scholar 

  114. Dreos R, Ambrosini G, Cavin Perier R, Bucher P (2013) EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era. Nucleic Acids Res 41(Database issue):D157–D164. https://doi.org/10.1093/nar/gks1233

    Google Scholar 

  115. Dreos R, Ambrosini G, Perier RC, Bucher P (2015) The eukaryotic promoter database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res 43(Database issue):D92–D96. https://doi.org/10.1093/nar/gku1111

    Google Scholar 

  116. Abeel T, Van de Peer Y, Saeys Y (2009) Toward a gold standard for promoter prediction evaluation. Bioinformatics (Oxford, England) 25(12):i313–i320. https://doi.org/10.1093/bioinformatics/btp191

    Google Scholar 

  117. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics (Oxford, England) 18(11):1427–1431

    Google Scholar 

  118. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41(Web Server issue):W597–W600. https://doi.org/10.1093/nar/gkt376

    Google Scholar 

  119. Yan H, Tian S, Slager SL, Sun Z, Ordog T (2016) Genome-wide epigenetic studies in human disease: a primer on -Omic technologies. Am J Epidemiol 183(2):96–109

    Google Scholar 

  120. Knudsen S (1999) Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics (Oxford, England) 15(5):356–361

    Google Scholar 

  121. Halees AS, Leyfer D, Weng Z (2003) PromoSer: a large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res 31(13):3554–3559

    Google Scholar 

  122. Lee TY, Chang WC, Hsu JB, Chang TH, Shien DM (2012) GPMiner: an integrated system for mining combinatorial cis-regulatory elements in mammalian gene group. BMC Genomics 13(Suppl 1):S3. https://doi.org/10.1186/1471-2164-13-s1-s3

    Google Scholar 

  123. Zhang J, Shi Z, Nan Y, Li M (2016) Inhibiting malignant phenotypes of the bladder cancer cells by silencing long noncoding RNA SChLAP1. Int Urol Nephrol 48(5):711–716

    Google Scholar 

  124. Davuluri RV, Grosse I, Zhang MQ (2001) Computational identification of promoters and first exons in the human genome. Nat Genet 29(4):412–417

    Google Scholar 

  125. Down TA, Hubbard TJ (2002) Computational detection and location of transcription start sites in mammalian genomic DNA. Genome Res 12(3):458–461

    Google Scholar 

  126. Ponger L, Mouchiroud D (2002) CpGProD: identifying CpG islands associated with transcription start sites in large genomic mammalian sequences. Bioinformatics (Oxford, England) 18(4):631–633

    Google Scholar 

  127. Aranyi T, Tusnady GE (2007) BiSearch: ePCR tool for native or bisulfite-treated genomic template. Methods in molecular biology (Clifton, NJ) 402:385–402. https://doi.org/10.1007/978-1-59745-528-2_20

    Google Scholar 

  128. Schuffler P, Mikeska T, Waha A, Lengauer T, Bock C (2009) MethMarker: user-friendly design and optimization of gene-specific DNA methylation assays. Genome Biol 10(10):R105. https://doi.org/10.1186/gb-2009-10-10-r105

    Google Scholar 

  129. Pandey RV, Pulverer W, Kallmeyer R, Beikircher G, Pabinger S, Kriegner A, Weinhausel A (2016) MSP-HTPrimer: a high-throughput primer design tool to improve assay design for DNA methylation analysis in epigenetics. Clin Epigenetics 8:101. https://doi.org/10.1186/s13148-016-0269-3

    Google Scholar 

  130. Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T (2005) BiQ analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics (Oxford, England) 21(21):4067–4068

    Google Scholar 

  131. Lutsik P, Feuerbach L, Arand J, Lengauer T, Walter J, Bock C (2011) BiQ analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing. Nucleic Acids Res 39(Web Server issue):W551–W556. https://doi.org/10.1093/nar/gkr312

    Google Scholar 

  132. Becker D, Lutsik P, Ebert P, Bock C, Lengauer T, Walter J (2014) BiQ analyzer HiMod: an interactive software tool for high-throughput locus-specific analysis of 5-methylcytosine and its oxidized derivatives. Nucleic Acids Res 42(Web Server issue):W501–W507. https://doi.org/10.1093/nar/gku457

    Google Scholar 

  133. Xin Y, Chanrion B, O'Donnell AH, Milekic M, Costa R, Ge Y, Haghighi FG (2012) MethylomeDB: a database of DNA methylation profiles of the brain. Nucleic Acids Res 40(Database issue):D1245–D1249. https://doi.org/10.1093/nar/gkr1193

    Google Scholar 

  134. Lv J, Liu H, Su J, Wu X, Li B, Xiao X, Wang F, Wu Q, Zhang Y (2012) DiseaseMeth: a human disease methylation database. Nucleic Acids Res 40(Database issue):D1030–D1035. https://doi.org/10.1093/nar/gkr1169

    Google Scholar 

  135. Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD (2013) A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS One 8(12):e81148. https://doi.org/10.1371/journal.pone.0081148

    Google Scholar 

  136. Satterlee JS, Beckel-Mitchener A, McAllister K, Procaccini DC, Rutter JL, Tyson FL, Chadwick LH (2015) Community resources and technologies developed through the NIH roadmap Epigenomics program. Methods Mol Biol 1238:27–49

    Google Scholar 

  137. Bujold D, Morais DA, Gauthier C, Cote C, Caron M, Kwan T, Chen KC, Laperle J, Markovits AN, Pastinen T, Caron B, Veilleux A, Jacques PE, Bourque G (2016) The international human Epigenome consortium data portal. Cell Syst 3(5):496–499.e492

    Google Scholar 

  138. Albrecht F, List M, Bock C, Lengauer T (2016) DeepBlue epigenomic data server: programmatic data retrieval and analysis of epigenome region sets. Nucleic Acids Res 44(W1):W581–W586. https://doi.org/10.1093/nar/gkw211

    Google Scholar 

  139. Aken BL, Achuthan P, Akanni W, Amode MR, Bernsdorff F, Bhai J, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Gil L, Giron CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Juettemann T, Keenan S, Laird MR, Lavidas I, Maurel T, McLaren W, Moore B, Murphy DN, Nag R, Newman V, Nuhn M, Ong CK, Parker A, Patricio M, Riat HS, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Wilder SP, Zadissa A, Kostadima M, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Cunningham F, Yates A, Zerbino DR, Flicek P (2017) Ensembl 2017. Nucleic Acids Res 45(D1):D635–d642. https://doi.org/10.1093/nar/gkw1104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edyta Reszka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reszka, E., Zienolddiny, S. (2018). Epigenetic Basis of Circadian Rhythm Disruption in Cancer. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics for Precision Medicine . Methods in Molecular Biology, vol 1856. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8751-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8751-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8750-4

  • Online ISBN: 978-1-4939-8751-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics