Skip to main content

Enzymatic Assembly of Ubiquitin Chains

  • Protocol
  • First Online:
The Ubiquitin Proteasome System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1844))

Abstract

The availability of different polyubiquitin chains of specific linkage types has changed the appreciation of the specificity in the ubiquitin (Ub) system. Numerous E2 Ub-conjugating enzymes and E3 Ub ligases, Ub-binding domains (UBDs), and deubiquitinases (DUBs) are now known to assemble, bind, or hydrolyze individual linkage types, respectively. Biochemical and structural studies of these processes require milligram quantities of pure polyUb. Here we describe protocols that allow the enzymatic synthesis and purification of six of the eight homotypic polyUb chains through the use of chain-specific Ub ligases and DUBs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26:399–422. https://doi.org/10.1038/cr.2016.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18:579–586. https://doi.org/10.1038/ncb3358

    Article  CAS  PubMed  Google Scholar 

  3. Rape M (2018) Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19:59–70. https://doi.org/10.1038/nrm.2017.83

    Article  CAS  PubMed  Google Scholar 

  4. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  5. Harper JW, Ordureau A, Heo J-M (2018) Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol 19:93–108. https://doi.org/10.1038/nrm.2017.129

    Article  CAS  PubMed  Google Scholar 

  6. Ordureau A, Münch C, Harper JW (2015) Quantifying ubiquitin signaling. Mol Cell 58:660–676. https://doi.org/10.1016/j.molcel.2015.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mevissen TET, Hospenthal MK, Geurink PP et al (2013) OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154:169–184. https://doi.org/10.1016/j.cell.2013.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hameed DS, Sapmaz A, Ovaa H (2017) How chemical synthesis of ubiquitin conjugates helps to understand ubiquitin signal transduction. Bioconjug Chem 28:805–815. https://doi.org/10.1021/acs.bioconjchem.6b00140

    Article  CAS  PubMed  Google Scholar 

  9. Mali SM, Singh SK, Eid E, Brik A (2017) Ubiquitin signaling: chemistry comes to the rescue. J Am Chem Soc 139:4971–4986. https://doi.org/10.1021/jacs.7b00089

    Article  CAS  Google Scholar 

  10. Pickart CM, Raasi S (2005) Controlled synthesis of Polyubiquitin chains. In: Ubiquitin and protein degradation, Part B. Elsevier, Amsterdam, pp 21–36

    Chapter  Google Scholar 

  11. Dong KC, Helgason E, Yu C et al (2011) Preparation of distinct ubiquitin chain reagents of high purity and yield. Structure 19:1053–1063. https://doi.org/10.1016/j.str.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  12. Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD (2008) Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. J Biol Chem 283:19581–19592. https://doi.org/10.1074/jbc.M800947200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hospenthal MK, Freund SMV, Komander D (2013) Assembly, analysis and architecture of atypical ubiquitin chains. Nat Struct Mol Biol 20:555–565. https://doi.org/10.1038/nsmb.2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bremm A, Freund SMV, Komander D (2010) Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 17:939–947. https://doi.org/10.1038/nsmb.1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michel MA, Elliott PR, Swatek KN et al (2015) Assembly and specific recognition of K29- and K33-linked polyubiquitin. Mol Cell 58:95–109. https://doi.org/10.1016/j.molcel.2015.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mevissen TET, Kulathu Y, Mulder MPC et al (2016) Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature 538:402–405. https://doi.org/10.1038/nature19836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stieglitz B, Morris-Davies AC, Koliopoulos MG et al (2012) LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep 13:840–846. https://doi.org/10.1038/embor.2012.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Komander D, Reyes-Turcu F, Licchesi JDF et al (2009) Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10:466–473. https://doi.org/10.1038/embor.2009.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35:265–273. https://doi.org/10.1016/j.ymeth.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  20. Hospenthal MK, Mevissen TET, Komander D (2015) Deubiquitinase-based analysis of ubiquitin chain architecture using ubiquitin chain restriction (UbiCRest). Nat Protoc 10:349–361. https://doi.org/10.1038/nprot.2015.018

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gersch M, Gladkova C, Schubert AF et al (2017) Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat Struct Mol Biol 24:920–930. https://doi.org/10.1038/nsmb.3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank present and past members of the DK laboratory who have helped to develop and refine described protocols by experimentation and discussions. Work in the D.K. lab is funded by the Medical Research Council [U105192732], the European Research Council [309756, 724804], and the Lister Institute for Preventive Medicine. M.A.M. was supported by a PhD fellowship of the Boehringer Ingelheim Fonds and a Doc.Mobility fellowship of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Komander or Paul R. Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Michel, M.A., Komander, D., Elliott, P.R. (2018). Enzymatic Assembly of Ubiquitin Chains. In: Mayor, T., Kleiger, G. (eds) The Ubiquitin Proteasome System. Methods in Molecular Biology, vol 1844. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8706-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8706-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8705-4

  • Online ISBN: 978-1-4939-8706-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics