Skip to main content

3D Bioprinting and Stem Cells

  • Protocol
  • First Online:
Somatic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1842))

Abstract

Three-dimensional (3D) in vitro modeling is increasingly relevant as two-dimensional (2D) cultures have been recognized with limits to recapitulate the complex endogenous conditions in the body. Additionally, fabrication technology is more accessible than ever. Bioprinting, in particular, is an additive manufacturing technique that expands the capabilities of in vitro studies by precisely depositing cells embedded within a 3D biomaterial scaffold that acts as temporary extracellular matrix (ECM). More importantly, bioprinting has vast potential for customization. This allows users to manipulate parameters such as scaffold design, biomaterial selection, and cell types, to create specialized biomimetic 3D systems.

The development of a 3D system is important to recapitulate the bone marrow (BM) microenvironment since this particular organ cannot be mimicked with other methods such as organoids. The 3D system can be used to study the interactions between native BM cells and metastatic breast cancer cells (BCCs). Although not perfect, such a system can recapitulate the BM microenvironment. Mesenchymal stem cells (MSCs), a key population within the BM, are known to communicate with BCCs invading the BM and to aid in their transition into dormancy. Dormant BCCs are cycling quiescent and resistant to chemotherapy, which allows them to survive in the BM to resurge even after decades. These persisting BCCs have been identified as the stem cell subset. These BCCs exhibit self-renewal and can be induced to differentiate. More importantly, this BCC subset can initiate tumor formation, exert chemoresistance, and form gap junction with endogenous BM stroma, including MSCs. The bioprinted model detailed in this chapter creates a MSC-BC stem cell coculture system to study intercellular interactions in a model that is more representative of the endogenous 3D microenvironment than conventional 2D cultures. The method can reliably seed primary BM MSCs and BC stem cells within a bioprinted scaffold fabricated from CELLINK Bioink. Since bioprinting is a highly customizable technique, parameters described in this method (i.e., cell–cell ratio, scaffold dimensions) can easily be altered to serve other applications, including studies on hematopoietic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birgersdotter A, Sandberg R, Ernberg I (2005) Gene expression perturbation in vitro- a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15:405–412

    Article  PubMed  Google Scholar 

  2. Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14:633–639

    Article  CAS  PubMed  Google Scholar 

  3. Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17:524–532

    Article  CAS  PubMed  Google Scholar 

  4. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    Article  CAS  PubMed  Google Scholar 

  5. Dai X, Ma C, Lan Q, Xu T (2016) 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication 8:045005

    Article  CAS  PubMed  Google Scholar 

  6. Hakkinen KM, Harunaga JS, Doyle AD, Yamada KM (2011) Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A 17:713–724

    Article  CAS  PubMed  Google Scholar 

  7. Yu Y, Zhang Y, Martin JA, Ozbolat IT (2013) Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng 135:91001

    Article  Google Scholar 

  8. Zhou X, Zhu W, Nowicki M, Miao S, Cui H, Holmes B, Glazer RI, Zhang LG (2016) 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces 8:30017–30026

    Article  CAS  PubMed  Google Scholar 

  9. Guiro K, Arinzeh TL (2015) Bioengineering models for breast cancer research. Breast Cancer 9:57–70

    PubMed  CAS  Google Scholar 

  10. Dababneh AB, Ozbolat IT (2014) Bioprinting technology: a current state-of-the-art review. J Manuf Sci Eng 136:061016

    Article  Google Scholar 

  11. Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12(12):3265–3283

    Article  CAS  PubMed  Google Scholar 

  12. Kasza KE, Rowat AC, Liu J, Angelini TE, Brangwynne CP, Koenderink GH, Weitz DA (2007) The cell as a material. Curr Opin Cell Biol 19:101–107

    Article  CAS  PubMed  Google Scholar 

  13. Steer DL, Nigam SK (2004) Developmental approaches to kidney tissue engineering. Am J Physiol Renal Physiol 286:F1–F7

    Article  CAS  PubMed  Google Scholar 

  14. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338(6109):921–926

    Article  CAS  PubMed  Google Scholar 

  15. Marga F, Neagu A, Kosztin I, Forgacs G (2007) Developmental biology and tissue engineering. Birth Defects Res C Embryo Today 81:320–328

    Article  CAS  PubMed  Google Scholar 

  16. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kelm JM, Lorber V, Snedeker JG, Schmidt D, Broggini-Tenzer A, Weisstanner M, Odermatt B, Mol A, Zünd G, Hoerstrup SP (2010) A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J Biotechnol 148:46–55

    Article  CAS  PubMed  Google Scholar 

  18. Skardal A, Zhang J, Prestwich GD (2010) Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31:6173–6181

    Article  CAS  PubMed  Google Scholar 

  19. Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 18:438–841

    Article  CAS  PubMed  Google Scholar 

  20. Goldmann T, Gonzalez JS (2000) DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J Biochem Biophys Methods 42(3):105–110

    Article  CAS  PubMed  Google Scholar 

  21. Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    Article  CAS  PubMed  Google Scholar 

  22. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    PubMed  CAS  Google Scholar 

  23. Cui X, Boland T, D D'Lima D, K Lotz M (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4(4):703–713

    Article  CAS  PubMed  Google Scholar 

  25. Fang Y, Frampton JP, Raghavan S, Sabahi-Kaviani R, Luker G, Deng CX, Takayama S (2012) Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods 18:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saunders R, Bosworth L, Gough J, Derby B, Reis N (2004) Selective cell delivery for 3D tissue culture and engineering. Eur Cells Mater 7:84–85

    Google Scholar 

  27. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666

    Article  CAS  PubMed  Google Scholar 

  29. Colina M, Serra P, Fernández-Pradas JM, Sevilla L, Morenza JL (2005) DNA deposition through laser induced forward transfer. Biosens Bioelectron 20:1638–1642

    Article  CAS  PubMed  Google Scholar 

  30. Kim JD, Choi JS, Kim BS, Choi YC, Cho YW (2010) Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer 51:2147–2154

    Article  CAS  Google Scholar 

  31. Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res A 101:272–284

    Article  CAS  PubMed  Google Scholar 

  32. Chrisey DB (2000) The power of direct writing. Science 289:879–881

    Article  CAS  PubMed  Google Scholar 

  33. Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine 5:507–515

    Article  PubMed  Google Scholar 

  34. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256

    Article  CAS  PubMed  Google Scholar 

  35. Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvári L, Chrisey DB, Szabó A, Nógrádi A (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11:1817–1823

    Article  CAS  PubMed  Google Scholar 

  36. Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, Polchow B, Reimers K, Stoelting S, Ma N (2009) Laser printing of skin cells and human stem cells. Tissue Eng 16:847–854

    Article  CAS  Google Scholar 

  37. Kattamis NT, Purnick PE, Weiss R, Arnold CB (2007) Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl Phys Lett 91:171120

    Article  CAS  Google Scholar 

  38. Duocastella M, Fernández-Pradas J, Morenza J, Zafra D, Serra P (2010) Novel laser printing technique for miniaturized biosensors preparation. Sensors Actuators B Chem 145:596–600

    Article  CAS  Google Scholar 

  39. Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 98:160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fedorovich NE, Swennen I, Girones J, Moroni L, Van Blitterswijk CA, Schacht E, Alblas J, Dhert WJ (2009) Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules 10:1689–1696

    Article  CAS  PubMed  Google Scholar 

  41. Chang R, Nam J, Sun W (2008) Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing. Tissue Eng 14:41–48

    Article  CAS  Google Scholar 

  42. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, Warren WL, Williams SK (2004) Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng 10:1566–1576

    Article  CAS  PubMed  Google Scholar 

  43. Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W (2009) Characterization of cell viability during bioprinting processes. Biotechnol J 4:1168–1177

    Article  CAS  PubMed  Google Scholar 

  44. Reed EJ, Klumb L, Koobatian M, Viney C (2009) Biomimicry as a route to new materials: what kinds of lessons are useful? Math Phys Eng Sci 367:1571–1585

    Article  CAS  Google Scholar 

  45. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–2164

    Article  CAS  PubMed  Google Scholar 

  46. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35:217–239

    Article  CAS  PubMed  Google Scholar 

  47. Haycock JW (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol Biol 695:1–15

    Article  CAS  PubMed  Google Scholar 

  48. Ambesi-Impiombato F, Parks L, Coon H (1980) Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci 77:3455–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5:326–333

    Article  CAS  PubMed  Google Scholar 

  50. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60:691–699

    Article  PubMed  Google Scholar 

  51. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Chi J, Liu J, Gao C, Wang K, Shan T, Li Y, Shang W, Gu F (2017) 3D printed gelatin-alginate bioactive scaffolds combined with mice bone marrow mesenchymal stem cells: a biocompatibility study. Int J Clin Exp Pathol 10:6299–6307

    Google Scholar 

  53. Patel SA, Ramkissoon SH, Bryan M, Pliner LF, Dontu G, Patel PS, Amiri S, Pine SR, Rameshwar P (2012) Delineation of breast cancer cell hierarchy identifies the subset responsible for dormancy. Sci Rep 2:906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Corcoran KE, Trzaska KA, Fernandes H, Bryan M, Taborga M, Srinivas V, Packman K, Patel PS, Rameshwar P (2008) Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One 3:e2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bliss SA, Sinha G, Sandiford OA, Williams L, Engelberth DJ, Guiro K, IL L, Greco SJ, Ayer S, Bryan M, Kumar R, Ponzio NM, Rameshwar P (2016) Mesenchymal stem cell-derived exosomes stimulates cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res 76:1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgment

In partial fulfillment for a Ph.D. by CAM. This work is supported by a grant awarded by F.M Kirby Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranela Rameshwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moore, C.A., Shah, N.N., Smith, C.P., Rameshwar, P. (2018). 3D Bioprinting and Stem Cells. In: Singh, S., Rameshwar, P. (eds) Somatic Stem Cells. Methods in Molecular Biology, vol 1842. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8697-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8697-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8696-5

  • Online ISBN: 978-1-4939-8697-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics