Skip to main content

Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells

  • Protocol
  • First Online:
Experimental Models of Cardiovascular Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1816))

Abstract

In vitro generated mammalian cardiomyocytes provide experimental models for studying normal mammalian cardiomyocyte development, for disease modeling and for drug development. They also promise to inform future therapeutic strategies for repair of injured or diseased myocardium. Here we provide reliable protocols for differentiation of mouse embryonic stem cells into functional cardiomyocytes, together with Notes about trouble shooting and optimizing such protocols for specific cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  3. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4):661–680

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Z, Huangfu D (2013) Human pluripotent stem cells: an emerging model in developmental biology. Development 140(4):705–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103(5):389–398

    Article  CAS  PubMed  Google Scholar 

  7. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240

    Article  CAS  PubMed  Google Scholar 

  8. Magin TM, McWhir J, Melton DW (1992) A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency. Nucleic Acids Res 20(14):3795–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90(18):8424–8428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4(6):487–492

    Article  CAS  PubMed  Google Scholar 

  11. Conner DA (2001) Mouse embryonic stem (ES) cell culture. In: Current protocols in molecular biology. Wiley, Hoboken

    Google Scholar 

  12. Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M et al (2008) Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3(1):69–84

    Article  CAS  PubMed  Google Scholar 

  13. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE et al (2012) Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151(1):206–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishida H, Saba R, Kokkinopoulos I, Hashimoto M, Yamaguchi O, Nowotschin S et al (2016) GFRA2 identifies cardiac progenitors and mediates cardiomyocyte differentiation in a RET-independent signaling pathway. Cell Rep 16(4):1026–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kokkinopoulos I, Ishida H, Saba R, Coppen S, Suzuki K, Yashiro K (2016) Cardiomyocyte differentiation from mouse embryonic stem cells using a simple and defined protocol. Dev Dyn 245(2):157–165

    Article  CAS  PubMed  Google Scholar 

  17. Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L et al (2007) Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci 104(23):9685–9690

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Hao J, Hong CC (2011) Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/β-catenin signaling. ACS Chem Biol 6:192–197

    Article  CAS  PubMed  Google Scholar 

  19. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X et al (2012) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walker JM, Jackson M, Taylor AH, Jones EA, Forrester LM (2010) Mouse cell culture, Methods in molecular biology, vol 633. Springer, New York, pp 29–56

    Book  Google Scholar 

  21. Smith AG (1991) Culture and differentiation of Embryoinic stem cells. J Tissue Cult Methods 13(330):89–94

    Article  Google Scholar 

  22. Gaztelumendi N, Nogués C (2014) Chromosome instability in mouse embryonic stem cells. Sci Rep 4:5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yagi M, Kishigami S, Tanaka A, Semi K, Mizutani E, Wakayama S et al (2017) Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature 548(7666):20–22

    Google Scholar 

  24. Tamm C, Galitó SP, Annerén C (2013) A comparative study of protocols for mouse embryonic stem cell culturing. PLoS One 8(12):1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Bruneau lab (Gladstone Institute) and the Martinez-Arias lab (University of Cambridge) for helpful advice regarding mouse ES cell culture. We thank Kate Watt and Yvonne Turnbull (University of Aberdeen), for lab management and technical support, the British Heart Foundation (PG/13/23/30080) for research funding, and the Institute of Medical Sciences (University of Aberdeen) for PhD studentship funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hoppler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lynch, A.T., Mazzotta, S., Hoppler, S. (2018). Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells. In: Ishikawa, K. (eds) Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology, vol 1816. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8597-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8597-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8596-8

  • Online ISBN: 978-1-4939-8597-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics