Skip to main content

Mathematical Techniques for Understanding Platelet Regulation and the Development of New Pharmacological Approaches

  • Protocol
  • First Online:
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1812))

Abstract

Mathematical and computational modeling is currently in the process of becoming an accepted tool in the arsenal of methods utilized for the investigation of complex biological systems. For some problems in the field, like cellular metabolic regulation, neural impulse propagation, or cell cycle, progress is already unthinkable without use of such methods. Mathematical models of platelet signaling, function, and metabolism during the last years have not only been steadily increasing in their number, but have also been providing more in-depth insights, generating hypotheses, and allowing predictions to be made leading to new experimental designs and data. Here we describe the basic approaches to platelet mathematical model development and validation, highlighting the challenges involved. We then review the current theoretical models in the literature and how these are being utilized to increase our understanding of these complex cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Panteleev MA, Ananyeva NM, Ataullakhanov FI et al (2007) Mathematical models of blood coagulation and platelet adhesion: clinical applications. Curr Pharm Des 13(14):1457–1467

    Article  CAS  PubMed  Google Scholar 

  2. Ataullakhanov FI, Panteleev MA (2005) Mathematical modelling and computer simulation in blood coagulation. Pathophysiol Haemost Thromb 34(2–3):60–70

    Article  PubMed  Google Scholar 

  3. Xu Z, Kamocka M, Alber M et al (2011) Computational approaches to studying thrombus development. Arterioscler Thromb Vasc Biol 31(3):500–505

    Article  CAS  PubMed  Google Scholar 

  4. Diamond SL (2013) Systems biology of coagulation. J Thromb Haemost 11(s1):224–232

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shibeko AM, Panteleev MA (2015) Untangling the complexity of blood coagulation network: use of computational modelling in pharmacology and diagnostics. Brief Bioinform 17(3):429–439

    Article  CAS  PubMed  Google Scholar 

  6. Мurray JD (2002) Mathematical biology: I. An introduction. Springer, New York, NY

    Google Scholar 

  7. Murray JD (2003) Mathematical biology II: spatial models and biochemical applications. Springer, New York, NY

    Google Scholar 

  8. Edelstein-Keshet L (2005) Mathematical models in biology. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  9. Szallasi Z, Stelling J, Periwal V (2006) System modeling in cell biology: from concepts to nuts and bolts. MIT Press, Cambridge

    Book  Google Scholar 

  10. Wildermuth MC (2000) Metabolic control analysis: biological applications and insights. Genome Biol 1(6). reviews1031-1

    Google Scholar 

  11. Davies MR, Wang K, Mirams GR et al (2016) Recent developments in using mechanistic cardiac modelling for drug safety evaluation. Drug Discov Today 21(6):924–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Purvis JE, Chatterjee MS, Brass LF et al (2008) A molecular signalling model of platelet phosphoinositide and calcium regulation during homeostasis and P2Y1 activation. Blood 112:4069–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woodroffe PJ, Bridge LJ, King JR et al (2010) Modelling of the activation of G-protein coupled receptors: drug free constitutive receptor activity. J Math Biol 60(3):313–346

    Article  CAS  PubMed  Google Scholar 

  14. Thul R (2014) Translating intracellular calcium signalling into models. Cold Spring Harb Protoc 5:pdb-top066266

    Article  Google Scholar 

  15. Sneyd J, Falcke M (2005) Models of the inositol trisphosphate receptor. Prog Biophys Mol Bio 89(3):207–245

    Article  CAS  Google Scholar 

  16. Sneyd J, Dufour JF (2002) A dynamic model of the type-2 inositol trisphosphate receptor. Proc Natl Acad Sci U S A 99(4):2398–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lenoci L, Duvernay M, Satchell S et al (2011) Mathematical model of PAR1-mediated activation of human platelets. Mol BioSyst 7:1129–1137

    Article  CAS  PubMed  Google Scholar 

  18. Sveshnikova AN, Ataullakhanov FI, Panteleev MA (2015) Compartmentalized calcium signalling triggers sub population formation upon platelet activation through PAR1. Mol BioSyst 11:1052–1060

    Article  CAS  PubMed  Google Scholar 

  19. Obydennyy SI, Sveshnikova AN, Ataullakhanov FI, Panteleev MA (2016) Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J Thromb Haemost 14(9):1867–1881

    Article  CAS  PubMed  Google Scholar 

  20. Wangorsch G, Butt E, Mark R et al (2011) Time-resolved in silico modeling of fine-tuned cAMP signalling in platelets: feedback loops, titrated phosphorylations and pharmacological modulation. BMC Syst Biol 5:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mischnik M, Boyanova D, Hubertus K et al (2013) A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation. Mol BioSyst 9:1326–1339

    Article  CAS  PubMed  Google Scholar 

  22. Shakhidzhanov SS, Shaturny VI, Panteleev MA et al (2015) Modulation and pre-amplification of PAR1 signalling by ADP acting via the P2Y12 receptor during platelet sub population formation. Biochim Biophys Acta 1850:2518–2529

    Article  CAS  PubMed  Google Scholar 

  23. Sveshnikova AN, Balatskiy AV, Demianova AS et al (2016) Systems biology insights into the meaning of the platelet's dual-receptor thrombin signalling. J Thromb Haemost 14:2045–2057

    Article  CAS  PubMed  Google Scholar 

  24. Dunster JL, Mazet F, Fry MJ et al (2015) Regulation of early steps of GPVI signal transduction by phosphatases: a systems biology approach. PLoS Comput Biol 11:e1004589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balabin FA, Sveshnikova AN (2016) Computational biology analysis of platelet signalling reveals roles of feedbacks through phospholipase C and inositol 1,4,5-trisphosphate 3-kinase in controlling amplitude and duration of calcium oscillations. Math Biosci 276:67–74

    Article  CAS  PubMed  Google Scholar 

  26. Holmsen H (1985) Platelet metabolism and activation. Semin Hematol 22(3):219–240

    PubMed  CAS  Google Scholar 

  27. de la Peña NC, Gutiérrez-Aguilar M, Hernández-Reséndiz I, Marín-Hernández Á, Rodríguez-Enríquez S (2017) Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets. PLoS One 12(8):e0182374

    Article  CAS  Google Scholar 

  28. Kramer PA, Ravi S, Chacko B, Johnson MS, Darley-Usmar VM (2014) A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2:206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varfolomeev SD, Gachok VP, Mevkh AT (1986) Kinetic behavior of the multienzyme system of blood prostanoid synthesis. Biosystems 19:45–54

    Article  CAS  PubMed  Google Scholar 

  30. Thomas A, Rahmanian S, Bordbar A et al (2014) Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance. Sci Rep 4:3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shepelyuk TO, Panteleev MA, Sveshnikova AN (2016) Computational modeling of quiescent platelet energy metabolism in the context of whole-body glucose turnover. Math Model Nat Pheno 11:91–101

    Article  CAS  Google Scholar 

  32. Guppy M, Abas L, Neylon C, Whisson ME, Whitham S, Pethick DW, Niu X (1997) Fuel choices by human platelets in human plasma. Eur J Biochem 244(1):161–167

    Article  CAS  PubMed  Google Scholar 

  33. Sorensen EN, Burgreen GW, Antaki JF (1999) Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann Biomed Eng 27:449–458

    Article  CAS  PubMed  Google Scholar 

  34. Sorensen EN, Burgreen GW, Antaki JF (1999) Computational simulation of platelet deposition and activation: I. Model development and properties. Ann Biomed Eng 27:436–448

    Article  CAS  PubMed  Google Scholar 

  35. Fogelson AL (1992) Continuum models of platelet aggregation: formulation and mechanical properties. SIAM J Appl Math 52(4):1089–1110

    Article  Google Scholar 

  36. Guy RD, Fogelson AL (2002) Probabilistic modeling of platelet aggregation: effects of activation time and receptor occupancy. J Theor Biol 219:33–53

    Article  CAS  PubMed  Google Scholar 

  37. Mody NA, Lomakin O, Doggett TA et al (2005) Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys J 88(2):1432–1443

    Article  CAS  PubMed  Google Scholar 

  38. Mody NA, King MR (2008) Platelet adhesive dynamics. Part I: characterization of platelet hydrodynamic collisions and wall effects. Biophys J 95(5):2539–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mody NA, King MR (2008) Platelet adhesive dynamics. Part II: high shear-induced transient aggregation via GPIbα-vWF-GPIbα bridging. Biophys J 95(5):2556–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chatterjee MS, Denney WS, Jing H et al (2010) Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Comput Biol 6(9):e1000950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuharsky AL, Fogelson AL (2001) Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys J 80(3):1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fogelson AL, Hussain YH, Leiderman K (2012) Blood clot formation under flow: the importance of factor XI depends strongly on platelet count. Biophys J 102(1):10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Anand M, Rajagopal KR (2002) A mathematical model to describe the change in the constitutive character of blood due to platelet activation. CR Mecanique 330(8):557–562

    Article  Google Scholar 

  44. Anand M, Rajagopal K, Rajagopal KR (2003) A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J Theor Med 5(3–4):183–218

    Article  Google Scholar 

  45. Pivkin IV, Richardson PD, Karniadakis G (2006) Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. P Natl A Sci 103(46):17164–17169

    Article  CAS  Google Scholar 

  46. Nesbitt WS, Westein E, Tovar-Lopez FJ et al (2009) A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15(6):665–673

    Article  CAS  PubMed  Google Scholar 

  47. Tovar-Lopez FJ, Rosengarten G, Khoshmanesh K et al (2011) Structural and hydrodynamic simulation of an acute stenosis-dependent thrombosis model in mice. J Biomech 44(6):1031–1039

    Article  PubMed  Google Scholar 

  48. Xu Z, Chen N, Kamocka MM et al (2008) A multiscale model of thrombus development. J R Soc Interface 5(24):705–722

    Article  PubMed  Google Scholar 

  49. Xu Z, Lioi J, Mu J et al (2010) A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys J 98(9):1723–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leiderman K, Fogelson AL (2011) Grow with the flow: a spatial–temporal model of platelet deposition and blood coagulation under flow. Math Med Biol 28(1):47–84

    Article  PubMed  Google Scholar 

  51. Leiderman K, Fogelson AL (2013) The influence of hindered transport on the development of platelet thrombi under flow. Bull Math Biol 75(8):1255–1283

    Article  PubMed  Google Scholar 

  52. Chatterjee MS, Purvis JE, Brass LF et al (2010) Pairwise agonist scanning predicts cellular signalling responses to combinatorial stimuli. Nat Biotechnol 28(7):727–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Flamm MH, Diamond SL, Sinno T (2009) Lattice kinetic Monte Carlo simulations of convective-diffusive systems. J Chem Phys 130(9):094904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Flamm MH, Colace TV, Chatterjee MS et al (2012) Multiscale prediction of patient-specific platelet function under flow. Blood 120(1):190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dunster JL, King JR (2017) Mathematical modelling of thrombin generation: asymptotic analysis and pathway characterization. IMA J Appl Math 82(1):60–96

    Article  Google Scholar 

  56. White JG (2007) Platelet structure. Platelets 2:45–71

    Article  Google Scholar 

  57. Eckly A, Rinckel J, Proamer F, Ulas N, Joshi S, Whiteheart SW, Gachet C (2016) Respective contributions of single and compound granule fusion to secretion by activated platelets. Blood 128(21):2538–2549

    Article  CAS  PubMed  Google Scholar 

  58. http://book.bionumbers.org/

  59. Wagner CL et al (1996) Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 88(3):907–914

    PubMed  CAS  Google Scholar 

  60. Clemetson KJ, Clemetson JM (2002) Platelet receptors. Platelets:117–144

    Google Scholar 

  61. Burkhart JM et al (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120(15):e73–e82

    Article  CAS  PubMed  Google Scholar 

  62. Ramström S et al (2008) Platelet PAR1 receptor density—correlation to platelet activation response and changes in exposure after platelet activation. Thromb Res 121(5):681–688

    Article  CAS  PubMed  Google Scholar 

  63. Baurand A, Raboisson P, Freund M, Leon C, Cazenave JP, Bourguignon JJ et al (2001) Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist. Eur J Pharmacol 412:21321

    Article  Google Scholar 

  64. Ohlmann P et al (2013) The platelet P2Y12 receptor under normal and pathological conditions. Assessment with the radiolabeled selective antagonist [3H] PSB-0413. Purinergic Signal 9(1):59–66

    Article  CAS  PubMed  Google Scholar 

  65. Dorn GW et al (1990) Increased platelet thromboxane A2/prostaglandin H2 receptors in patients with acute myocardial infarction. Circulation 81(1):212–218

    Article  PubMed  Google Scholar 

  66. Arehart E et al (2008) Acceleration of cardiovascular disease by a dysfunctional prostacyclin receptor mutation. Circ Res 102(8):986–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. ABRAHM DR et al (1986) Decreased α2-adrenergic receptors on platelet membranes from diabetic patients with autonomic neuropathy and orthostatic hypotension. J Clin Endocrinol Metab 63(4):906–912

    Article  CAS  PubMed  Google Scholar 

  68. Eigenthaler M, Nolte C, Halbrugge M, Walter U (1992) Concentration and regulation of cyclic nucleotides, cyclic-nucleotide-dependent protein kinases and one of their major substrates in human platelets. Estimating the rate of cAMP-regulated and cGMP-regulated protein phosphorylation in intact cells. Eur J Biochem 205(2):471–481

    Article  CAS  PubMed  Google Scholar 

  69. Wright JR, Amisten S, Goodall AH, Mahaut-Smith MP (2016) Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines. Thromb Haemost 116(2):272

    PubMed  PubMed Central  Google Scholar 

  70. Lee SB, Rao AK, Lee KH, Yang X, Bae YS, Rhee SG (1996) Decreased expression of phospholipase C-beta 2 isozyme in human platelets with impaired function. Blood 88(5):1684–1691

    PubMed  CAS  Google Scholar 

  71. Hensch NR, Karim ZA, Druey KM, Tansey MG, Khasawneh FT (2016) RGS10 negatively regulates platelet activation and thrombogenesis. PLoS One 11(11):e0165984. https://doi.org/10.1371/journal.pone.0165984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna L. Dunster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dunster, J.L., Panteleev, M.A., Gibbins, J.M., Sveshnikova, A.N. (2018). Mathematical Techniques for Understanding Platelet Regulation and the Development of New Pharmacological Approaches. In: Gibbins, J., Mahaut-Smith, M. (eds) Platelets and Megakaryocytes . Methods in Molecular Biology, vol 1812. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8585-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8585-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8584-5

  • Online ISBN: 978-1-4939-8585-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics