Skip to main content

Differentiation of Human Pluripotent Stem Cells to Megakaryocytes by Transcription Factor-Driven Forward Programming

  • Protocol
  • First Online:
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1812))

Abstract

The differentiation of megakaryocytes from human pluripotent stem cells in vitro offers intriguing new perspectives for research and transfusion medicine. However, applications have been hampered by the low efficiency of cytokine driven differentiation protocols leading to poor megakaryocyte purity and yield. Here we describe a novel forward programming approach relying on the combined ectopic expression of the three transcription factors GATA1, FLI1, and TAL1 in human pluripotent stem cells for large scale production of mature megakaryocytes using chemically defined culture and minimum cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rossant J, Tam PP (2017) New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 20(1):18–28. https://doi.org/10.1016/j.stem.2016.12.004

    Article  PubMed  CAS  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  PubMed  CAS  Google Scholar 

  3. Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13(5):497–505. https://doi.org/10.1038/ncb0511-497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gaur M, Kamata T, Wang S, Moran B, Shattil SJ, Leavitt AD (2006) Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost 4(2):436–442. https://doi.org/10.1111/j.1538-7836.2006.01744.x

    Article  PubMed  CAS  Google Scholar 

  5. Takayama N, Eto K (2012) Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application. Cell Mol Life Sci. https://doi.org/10.1007/s00018-012-0995-4

  6. Nakamura S, Takayama N, Hirata S, Seo H, Endo H, Ochi K, Fujita K, Koike T, Harimoto K, Dohda T, Watanabe A, Okita K, Takahashi N, Sawaguchi A, Yamanaka S, Nakauchi H, Nishimura S, Eto K (2014) Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 14(4):535–548. https://doi.org/10.1016/j.stem.2014.01.011

    Article  PubMed  CAS  Google Scholar 

  7. Feng Q, Shabrani N, Thon JN, Huo H, Thiel A, Machlus KR, Kim K, Brooks J, Li F, Luo C, Kimbrel EA, Wang J, Kim KS, Italiano J, Cho J, Lu SJ, Lanza R (2014) Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Rep 3(5):817–831. https://doi.org/10.1016/j.stemcr.2014.09.010

    Article  CAS  Google Scholar 

  8. Pick M, Azzola L, Osborne E, Stanley EG, Elefanty AG (2013) Generation of megakaryocytic progenitors from human embryonic stem cells in a feeder- and serum-free medium. PLoS One 8(2):e55530. https://doi.org/10.1371/journal.pone.0055530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Moreau T, Evans AL, Vasquez L, Tijssen MR, Yan Y, Trotter MW, Howard D, Colzani M, Arumugam M, Wu WH, Dalby A, Lampela R, Bouet G, Hobbs CM, Pask DC, Payne H, Ponomaryov T, Brill A, Soranzo N, Ouwehand WH, Pedersen RA, Ghevaert C (2016) Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun 7:11208. https://doi.org/10.1038/ncomms11208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Heazlewood SY, Nilsson SK, Cartledge K, Be CL, Vinson A, Gel M, Haylock DN (2017) Progress in bio-manufacture of platelets for transfusion. Platelets 28(7):649–656. https://doi.org/10.1080/09537104.2016.1257783

    Article  PubMed  CAS  Google Scholar 

  11. Cahan P, Daley GQ (2013) Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm3584

  12. Rouhani F, Kumasaka N, de Brito MC, Bradley A, Vallier L, Gaffney D (2014) Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genet 10(6):e1004432. https://doi.org/10.1371/journal.pgen.1004432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429. https://doi.org/10.1038/nmeth.1593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bernardo AS, Faial T, Gardner L, Niakan KK, Ortmann D, Senner CE, Callery EM, Trotter MW, Hemberger M, Smith JC, Bardwell L, Moffett A, Pedersen RA (2011) BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9(2):144–155. https://doi.org/10.1016/j.stem.2011.06.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686. https://doi.org/10.1038/nbt1310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIHR, NHSBT, MRC grants and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Moreau or Cedric J. G. Ghevaert .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

(MP4 46556 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moreau, T., Evans, A.L., Ghevaert, C.J.G. (2018). Differentiation of Human Pluripotent Stem Cells to Megakaryocytes by Transcription Factor-Driven Forward Programming. In: Gibbins, J., Mahaut-Smith, M. (eds) Platelets and Megakaryocytes . Methods in Molecular Biology, vol 1812. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8585-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8585-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8584-5

  • Online ISBN: 978-1-4939-8585-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics