Skip to main content

Affinity Purification of Neuropeptide Precursors from Mice Lacking Carboxypeptidase E Activity

  • Protocol
  • First Online:
Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1719))

Abstract

Peptidomic techniques are powerful tools to identify peptides in a biological sample. This protocol describes a targeted peptidomic approach that uses affinity chromatography to purify peptides that are substrates of carboxypeptidase E (CPE), an enzyme present in the secretory pathway of neuroendocrine cells. Many CPE products function as neuropeptides and/or peptide hormones, and therefore represent an important subset of the peptidome. Because CPE removes C-terminal Lys and Arg residues from peptide-processing intermediates, organisms lacking CPE show a large decrease in the levels of the mature forms of most neuropeptides and peptide hormones, and a very large increase in the levels of the processing intermediates that contain C-terminal Lys and/or Arg (i.e., the CPE substrates). These CPE substrates can be purified on an anhydrotrypsin-agarose affinity resin, which specifically binds peptides with C-terminal basic residues. Not all peptides with basic C-terminal residues within a cell are CPE substrates, and these other peptides will also be purified on the anhydrotrypsin affinity column. However, a comparison of peptides purified from wild-type mice and from mice lacking CPE allows for the rapid identification of CPE substrates based on their large increase in the absence of CPE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fricker LD (2012) In: Fricker LD, Devi L (eds) Neuropeptides and other bioactive peptides. Morgan & Claypool Life Sciences, Charleston, SC

    Google Scholar 

  2. Fuller RS, Sterne RE, Thorner J (1988) Enzymes required for yeast prohormone processing. Ann Rev Physiol 50:345–362

    Article  CAS  Google Scholar 

  3. Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28:325–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andren PE, Caprioli RM (1999) Determination of extracellular release of neurotensin in discrete rat brain regions utilizing in vivo microdialysis/electrospray mass spectrometry. Brain Res 845:123–129

    Article  CAS  PubMed  Google Scholar 

  5. Garden RW, Shippy SA, Li L et al (1998) Proteolytic processing of the Aplysia egg-laying hormone prohormone. Proc Natl Acad Sci U S A 95:3972–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fricker LD (2010) Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins. Mol Biosyst 6:1355–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fricker LD, Gelman JS, Castro LM et al (2012) Peptidomic analysis of HEK293T cells: effect of the proteasome inhibitor epoxomicin on intracellular peptides. J Proteome Res 11:1981–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferro ES, Hyslop S, Camargo AC (2004) Intracellular peptides as putative natural regulators of protein interactions. J Neurochem 91:769–777

    Article  CAS  PubMed  Google Scholar 

  9. Fricker LD, Snyder SH (1982) Enkephalin convertase: purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin granules. Proc Natl Acad Sci U S A 79:3886–3890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eipper BA, Mains RE (1988) Peptide alpha-amidation. Ann Rev Physiol 50:333–344

    Article  CAS  Google Scholar 

  11. Varlamov O, Leiter EH, Fricker LD (1996) Induced and spontaneous mutations at Ser202 of carboxypeptidase E: effect on enzyme expression, activity, and intracellular routing. J Biol Chem 271:13981–13986

    Article  CAS  PubMed  Google Scholar 

  12. Naggert JK, Fricker LD, Varlamov O et al (1995) Hyperproinsulinemia in obese fat/fat mice associated with a point mutation in the carboxypeptidase E gene and reduced carboxypeptidase E activity in the pancreatic islets. Nat Genet 10:135–142

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguiz RM, Wilkins JJ, Creson TK et al (2013) Emergence of anxiety-like behaviours in depressive-like Cpe(fat/fat) mice. Int J Neuropsychopharmacol 16:1623–1634

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Che FY, Berezniuk I et al (2008) Peptidomics of Cpe(fat/fat) mouse brain regions: implications for neuropeptide processing. J Neurochem 107:1596–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Che FY, Yan L, Li H et al (2001) Identification of peptides from brain and pituitary of Cpe fat/Cpe fat mice. Proc Natl Acad Sci U S A 98:9971–9976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fricker LD, McKinzie AA, Sun J et al (2000) Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J Neurosci 20:639–648

    CAS  PubMed  Google Scholar 

  17. Jacob TC, Kaplan JM (2003) The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions. J Neurosci 23:2122–2130

    CAS  PubMed  Google Scholar 

  18. Husson SJ, Janssen T, Baggerman G et al (2007) Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. J Neurochem 102:246–260

    Article  CAS  PubMed  Google Scholar 

  19. Zasloff M (1992) Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol 4:3–7

    Article  CAS  PubMed  Google Scholar 

  20. Che FY, Lim J, Biswas R et al (2005) Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Mol Cell Proteomics 4:1391–1405

    Article  CAS  PubMed  Google Scholar 

  21. Refojo D, Kovalovsky D, Young JI et al (2002) Increased splenocyte proliferative response and cytokine production in beta-endorphin-deficient mice. J Neuroimmunol 131:126–134

    Article  CAS  PubMed  Google Scholar 

  22. Svensson M, Skold K, Svenningsson P et al (2003) Peptidomics-based discovery of novel neuropeptides. J Proteome Res 2:213–219

    Article  CAS  PubMed  Google Scholar 

  23. Skold K, Svensson M, Norrman M et al (2007) The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: stathmin 2-20 and peptides as sample quality indicators. Proteomics 7:4445–4456

    Article  PubMed  Google Scholar 

  24. Scholz B, Skold K, Kultima K et al (2011) Impact of temperature dependent sampling procedures in proteomics and peptidomics—a characterization of the liver and pancreas post mortem degradome. Mol Cell Proteomics 10:M900229MCP900200

    Article  Google Scholar 

  25. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd Fricker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fricker, L. (2018). Affinity Purification of Neuropeptide Precursors from Mice Lacking Carboxypeptidase E Activity. In: Schrader, M., Fricker, L. (eds) Peptidomics. Methods in Molecular Biology, vol 1719. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7537-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7537-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7536-5

  • Online ISBN: 978-1-4939-7537-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics