Skip to main content

Integration of Comparative Genomics with Genome-Scale Metabolic Modeling to Investigate Strain-Specific Phenotypical Differences

  • Protocol
  • First Online:
Metabolic Network Reconstruction and Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1716))

Abstract

Genome-scale metabolic reconstructions are powerful resources that allow translation biological knowledge and genomic information to phenotypical predictions using a number of constraint-based methods. This approach has been applied in recent years to gain deep insights into the cellular phenotype role of the genes at a systems-level, driving the design of targeted experiments and paving the way for knowledge-based synthetic biology.

The identification of genetic determinants underlying the variability at the phenotypical level is crucial to understand the evolutionary trajectories of a bacterial species. Recently, genome-scale metabolic models of different strains have been assembled to highlight the intra-species diversity at the metabolic level. The strain-specific metabolic capabilities and auxotrophies can be used to identify factors related to the lifestyle diversity of a bacterial species.

In this chapter, we present the computational steps to perform genome-scale metabolic modeling in the context of comparative genomics, and the different challenges related to this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Brooks AN, Turkarslan S, Beer KD, Lo FY, Baliga NS (2011) Adaptation of cells to new environments. Wiley Interdiscip Rev Syst Biol Med 3(5):544–561. https://doi.org/10.1002/wsbm.136

    Article  CAS  PubMed  Google Scholar 

  2. Telford JL (2008) Bacterial genome variability and its impact on vaccine design. Cell Host Microbe 3(6):408–416. https://doi.org/10.1016/j.chom.2008.05.004

    Article  CAS  PubMed  Google Scholar 

  3. Doolittle WF, Papke RT (2006) Genomics and the bacterial species problem. Genome Biol 7(9):116. https://doi.org/10.1186/gb-2006-7-9-116

    Article  PubMed  PubMed Central  Google Scholar 

  4. Didelot X, Maiden MC (2010) Impact of recombination on bacterial evolution. Trends Microbiol 18(7):315–322. https://doi.org/10.1016/j.tim.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Darmon E, Leach DR (2014) Bacterial genome instability. Microbiol Mol Biol Rev 78(1):1–39. https://doi.org/10.1128/MMBR.00035-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15(6):589–594. https://doi.org/10.1016/j.gde.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  7. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102(39):13950–13955. https://doi.org/10.1073/pnas.0506758102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tettelin H, Medini D, Donati C, Masignani V (2006) Towards a universal group B Streptococcus vaccine using multistrain genome analysis. Expert Rev Vaccines 5(5):687–694. https://doi.org/10.1586/14760584.5.5.687

    Article  CAS  PubMed  Google Scholar 

  9. Mora M, Veggi D, Santini L, Pizza M, Rappuoli R (2003) Reverse vaccinology. Drug Discov Today 8(10):459–464

    Article  CAS  PubMed  Google Scholar 

  10. Rappuoli R (2001) Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19(17-19):2688–2691

    Article  CAS  PubMed  Google Scholar 

  11. Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD et al (2013) Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci U S A 110(50):20338–20343. https://doi.org/10.1073/pnas.1307797110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BO (2016) Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci U S A 113(26):E3801–E3809. https://doi.org/10.1073/pnas.1523199113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  15. Kent WJ (2002) BLAT--the BLAST-like alignment tool. Genome Res 12(4):656–664. https://doi.org/10.1101/gr.229202. Article published online before March 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Delcher AL, Phillippy A, Carlton J, Salzberg SL (2002) Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30(11):2478–2483

    Article  PubMed  PubMed Central  Google Scholar 

  17. Altenhoff AM, Boeckmann B, Capella-Gutierrez S, Dalquen DA, DeLuca T, Forslund K et al (2016) Standardized benchmarking in the quest for orthologs. Nat Methods 13(5):425–430. https://doi.org/10.1038/nmeth.3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121. https://doi.org/10.1038/nprot.2009.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dandekar T, Fieselmann A, Majeed S, Ahmed Z (2014) Software applications toward quantitative metabolic flux analysis and modeling. Brief Bioinform 15(1):91–107. https://doi.org/10.1093/bib/bbs065

    Article  PubMed  Google Scholar 

  20. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307. https://doi.org/10.1038/nprot.2011.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol 7:74. https://doi.org/10.1186/1752-0509-7-74

    Article  PubMed  PubMed Central  Google Scholar 

  22. Berglund AC, Sjolund E, Ostlund G, Sonnhammer EL (2008) InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Res 36(Database issue):D263–D266. https://doi.org/10.1093/nar/gkm1020

    CAS  PubMed  Google Scholar 

  23. Kaduk M, Riegler C, Lemp O, Sonnhammer EL (2016) HieranoiDB: a database of orthologs inferred by Hieranoid. Nucleic Acids Res 45:D687. https://doi.org/10.1093/nar/gkw923.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Linard B, Allot A, Schneider R, Morel C, Ripp R, Bigler M et al (2015) OrthoInspector 2.0: software and database updates. Bioinformatics 31(3):447–448. https://doi.org/10.1093/bioinformatics/btu642

    Article  CAS  PubMed  Google Scholar 

  25. O’Brien KP, Remm M, Sonnhammer EL (2005) Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res 33(Database issue):D476–D480. https://doi.org/10.1093/nar/gki107

    Article  PubMed  Google Scholar 

  26. Pryszcz LP, Huerta-Cepas J, Gabaldon T (2011) MetaPhOrs: orthology and paralogy predictions from multiple phylogenetic evidence using a consistency-based confidence score. Nucleic Acids Res 39(5):e32. https://doi.org/10.1093/nar/gkq953

    Article  CAS  PubMed  Google Scholar 

  27. Contreras-Moreira B, Vinuesa P (2013) GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79(24):7696–7701. https://doi.org/10.1128/AEM.02411-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar VS, Maranas CD (2009) GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5(3):e1000308. https://doi.org/10.1371/journal.pcbi.1000308

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK, Herring CD et al (2006) Systems approach to refining genome annotation. Proc Natl Acad Sci U S A 103(46):17480–17484. https://doi.org/10.1073/pnas.0603364103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM et al (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011. Mol Syst Biol 7:535. https://doi.org/10.1038/msb.2011.65

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Bosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Monk, J., Bosi, E. (2018). Integration of Comparative Genomics with Genome-Scale Metabolic Modeling to Investigate Strain-Specific Phenotypical Differences. In: Fondi, M. (eds) Metabolic Network Reconstruction and Modeling. Methods in Molecular Biology, vol 1716. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7528-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7528-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7527-3

  • Online ISBN: 978-1-4939-7528-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics