Skip to main content

A Facile, In Vitro 384-Well Plate System to Model Disseminated Tumor Cells in the Bone Marrow Microenvironment

  • Protocol
  • First Online:
Cellular Quiescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1686))

Abstract

Bone marrow disseminated tumor cells (DTCs) are dormant cancer cells that harbor themselves in a bone marrow niche for years after patient remission before potentially returning to a proliferative state, causing recurrent cancer. DTCs reside in bone marrow environments with physiologically important mesenchymal stem cells that are often negatively affected by chemotherapy treatments. Currently, there are very few models of DTCs that recapitulate their dormant phenotype while producing enough samples to accurately quantify cancer and surrounding stromal cell behaviors. We present a three-dimensional spheroid-based model system that uses dual-color bioluminescence imaging to quantify differential cell viability in response to various compounds. We successfully screened for compounds that selectively eliminated cancer cells versus supportive stromal cells and verified results with comparison to efficacy in vivo. The spheroid coculture system successfully modeled key aspects of DTCs in the bone marrow microenvironment, facilitating testing for compounds to selectively eliminate DTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braun S, Vogl FD, Naume B et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353(8):793–802

    Article  CAS  PubMed  Google Scholar 

  2. Pantel K, Alix-Panabieres C (2014) Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. Bonekey Rep 3:584

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Giuliano M, Trivedi M et al (2013) Metastasis dormancy in estrogen receptor-positive breast cancer. Clin Cancer Res 19(23):6389–6397

    Article  CAS  PubMed  Google Scholar 

  4. Bidard FC, Vincent-Salomon A, Gomme S et al (2008) Disseminated tumor cells of breast cancer patients: a strong prognostic factor for distant and local relapse. Clin Cancer Res 14:3306–3311

    Article  CAS  PubMed  Google Scholar 

  5. Kim MY, Oskarsson T, Acharyya S et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kang Y, Pantel K (2013) Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23(5):573–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oskarsson T, Massagué J (2012) Extracellular matrix players in metastatic niches. EMBO J 31(2):254–256

    Article  CAS  PubMed  Google Scholar 

  8. Ono M, Kosaka N, Tominaga N et al (2014) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 7(332):ra63

    Article  PubMed  Google Scholar 

  9. Frenette P, Pinho S, Lucas D et al (2013) Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31:285–316

    Article  PubMed  Google Scholar 

  10. Cao J, Tao M, Yang P et al (2008) Effects of adjuvant chemotherapy on bone marrow mesenchymal stem cells of colorectal cancer patients. Cancer Lett 263(2):197–203

    Article  CAS  PubMed  Google Scholar 

  11. Braun S, Kentenich C, Janni W et al (2000) Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 18(1):80–86

    Article  CAS  PubMed  Google Scholar 

  12. Mathiesen RR, Borgen E, Renolen A et al (2012) Persistence of disseminated tumor cells after neoadjuvant treatment for locally advanced breast cancer predicts poor survival. Breast Cancer Res 14:R117

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cameron MD, Schmidt E, Kerkvliet N et al (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60(9):2541–2546

    CAS  PubMed  Google Scholar 

  14. Mehta G, Hsiao A, Ingram M et al (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164(2):192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McMillin DW, Delmore J, Weisberg E et al (2010) Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 16(4):483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weisberg E, Liu Q, Zhang X et al (2013) Selective Akt inhibitors synergize with tyrosine kinase inhibitors and effectively override stroma-associated cytoprotection of mutant FLT3-positive AML cells. PLoS One 8(2):e56473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marlow R, Honeth G, Lombardi S et al (2013) A novel model of dormancy for bone metastatic breast cancer cells. Cancer Res 73(23):6886–6899

    Article  CAS  PubMed  Google Scholar 

  18. Sakaue-Sawano A, Kurokawa H, Morimura T et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498

    Article  CAS  PubMed  Google Scholar 

  19. Cavnar S, Rickelmann A, Meguiar K et al (2015) Modeling selective elimination of quiescent cancer cells from bone marrow. Neoplasia 17(8):625–633

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stacer AC, Wang H, Fenner J et al (2015) Imaging reporters for proteasome activity identify tumor- and metastasis-initiating cells. Mol Imaging 14:414–428

    CAS  PubMed Central  Google Scholar 

  21. Cavnar S, Salomonsson E, Luker K et al (2013) Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids. J Lab Auto 19(2):208–214

    Article  Google Scholar 

  22. Coggins NL, Trakimas D, Chang SL et al (2014) CXCR7 controls competition for recruitment of β-arrestin 2 in cells expressing both CXCR4 and CXCR7. PLoS One 9(6):e98328

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kwong L, Costello J, Liu H et al (2012) Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med 18(10):1503–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Luker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Buschhaus, J.M., Luker, K.E., Luker, G.D. (2018). A Facile, In Vitro 384-Well Plate System to Model Disseminated Tumor Cells in the Bone Marrow Microenvironment. In: Lacorazza, H. (eds) Cellular Quiescence. Methods in Molecular Biology, vol 1686. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7371-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7371-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7370-5

  • Online ISBN: 978-1-4939-7371-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics