Skip to main content

3D Imaging of Whole-Mount Ovules at Cellular Resolution to Study Female Germline Development in Rice

  • Protocol
  • First Online:
Plant Germline Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1669))

Abstract

Recent advances in fluorescence-based staining of cellular compartments coupled with confocal microscopy imaging have allowed the visualization of three-dimensional (3D) structures with cellular resolution in various intact plant tissues and species. Such approaches are of particular interest for the analysis of the reproductive lineage in plants including the meiotic precursor cells deeply embedded within the ovary of the gynoecium enclosed in the flower. Yet, their relative inaccessibility and the lack of optical clarity of plant tissues prevent robust staining and imaging across several cell layers. Several whole-mount tissue staining and clearing techniques are available. One of them specifically allows staining of cellular boundaries in thick tissue samples while providing extreme optical clarity, using an acidic treatment followed by a modified Pseudo-Schiff propidium iodide (mPS-PI) method. While commonly used for Arabidopsis tissues, its application to other species like the model crop rice required protocol adaptations for obtaining robust staining that we present here. The procedure comprises six steps: (a) Material sampling; (b) Material fixation; (c) Tissue preparation; (d) Staining; (e) Sample mounting; and (d) Microscopy imaging. Particularly, we use ethanol and acetic anhydride as fixative reagents. A modified enzymatic treatment proved essential for starch degradation influencing optical clarity hence allowing acquisition of images at high resolution. This improved protocol is efficient for analyzing the megaspore mother cells in rice (Oryza sativa) ovary but is broadly applicable to other crop tissues of complex composition, without the need for tissue sectioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sieber P, Gheyselinck J, Gross-Hardt R, Laux T, Grossniklaus U, Schneitz K (2004) Pattern formation during early ovule development in Arabidopsis thaliana. Dev Biol 273(2):321–334. doi:10.1016/j.ydbio.2004.05.037

    Article  CAS  PubMed  Google Scholar 

  2. Colombo L, Battaglia R, Kater MM (2008) Arabidopsis ovule development and its evolutionary conservation. Trends Plant Sci 13(8):444–450. doi:10.1016/j.tplants.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  3. Cucinotta M, Colombo L, Roig-Villanova I (2014) Ovule development, a new model for lateral organ formation. Front Plant Sci 5:117. doi:10.3389/fpls.2014.00117

    Article  PubMed  PubMed Central  Google Scholar 

  4. Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthélémy J, Palauqui JC (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis. Plant Cell 20(6):1494–1503. doi:10.1105/tpc.107.056069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142(23):4168–4179. doi:10.1242/dev.127613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Musielak TJ, Schenkel L, Kolb M, Henschen A, Bayer M (2015) A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reprod 28(3–4):161–169. doi:10.1007/s00497-015-0267-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen ST, McCurdy DW (2015) High-resolution confocal imaging of wall ingrowth deposition in plant transfer cells: semi-quantitative analysis of phloem parenchyma transfer cell development in leaf minor veins of Arabidopsis. BMC Plant Biol 15:109. doi:10.1186/s12870-015-0483-8

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoshida S, Barbier de Reuille P, Lane B, Bassel GW, Prusinkiewicz P, Smith RS, Weijers D (2014) Genetic control of plant development by overriding a geometric division rule. Dev Cell 29(1):75–87. doi:10.1016/j.devcel.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  9. Bassel GW, Smith RS (2016) Quantifying morphogenesis in plants in 4D. Curr Opin Plant Biol 29:87–94. doi:10.1016/j.pbi.2015.11.005

    Article  PubMed  Google Scholar 

  10. Coen E, Rolland-Lagan AG, Matthews M, Bangham JA, Prusinkiewicz P (2004) The genetics of geometry. Proc Natl Acad Sci U S A 101(14):4728–4735. doi:10.1073/pnas.0306308101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernandez R, Das P, Mirabet V, Moscardi E, Traas J, Verdeil JL, Malandain G, Godin C (2010) Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7(7):547–553. doi:10.1038/nmeth.1472

    Article  CAS  PubMed  Google Scholar 

  12. Barbier de Reuille P, Routier-Kierzkowska AL, Kierzkowski D, Bassel GW, Schüpbach T, Tauriello G, Bajpai N, Strauss S, Weber A, Kiss A, Burian A, Hofhuis H, Sapala A, Lipowczan M, Heimlicher MB, Robinson S, Bayer EM, Basler K, Koumoutsakos P, Roeder AH, Aegerter-Wilmsen T, Nakayama N, Tsiantis M, Hay A, Kwiatkowska D, Xenarios I, Kuhlemeier C, Smith RS (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. elife 4:05864. doi:10.7554/eLife.05864

    Article  PubMed  Google Scholar 

  13. Mendocilla Sato E, Baroux C (2017) Analysis of 3D cellular organization of fixed plant tissues using a user-guided platform for image segmentation. Bio-Protocols 7(12):e2355

    Google Scholar 

  14. Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y, Teodoro G, Mikut R, Keller PJ (2016) Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos. Dev Cell 36(2):225–240. doi:10.1016/j.devcel.2015.12.028

    Article  CAS  PubMed  Google Scholar 

  15. Sankar M, Nieminen K, Ragni L, Xenarios I, Hardtke CS (2014) Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth. elife 3:e01567. doi:10.7554/eLife.01567

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska AL, Kierzkowski D, Roeder AH, Smith RS, Boudaoud A, Hamant O (2016) A mechanical feedback restricts sepal growth and shape in Arabidopsis. Curr Biol. doi:10.1016/j.cub.2016.03.004

  17. Summerfield RJ, Collinson ST, Ellis RH, Roberts EH, Penning de Vries FWT (1992) Photothermal responses of flowering in rice (Oryza sativa). Ann Bot 69(2):101–112. doi:10.1093/oxfordjournals.aob.a088314

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported and funded by the Commission for Technology and Innovation (CTI grant 16997), the Baugarten Stiftung Zürich, the University of Zürich, and the Swiss National Science Foundation (SNF grant 31003A_149974). We acknowledge Professor Ueli Grossniklaus (UG) for scientific support and insightful discussions and technical assistants of the department for organizational support and assistance with microscopy imaging (Christoph Eichenberger, Valeria Gagliardini, Arturo Bolaños, Peter Kopf).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia Baroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mendocilla-Sato, E., She, W., Baroux, C. (2017). 3D Imaging of Whole-Mount Ovules at Cellular Resolution to Study Female Germline Development in Rice. In: Schmidt, A. (eds) Plant Germline Development. Methods in Molecular Biology, vol 1669. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7286-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7286-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7285-2

  • Online ISBN: 978-1-4939-7286-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics