Skip to main content

Post-Translational Modification Profiling-Functional Proteomics for the Analysis of Immune Regulation

  • Protocol
  • First Online:
Proteomics for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1647))

Abstract

Posttranslational modifications (PTMs) of proteins are an integral part of major cellular regulatory mechanisms dictating protein function, localization, and stability. The capacity to screen PTMs using protein microarrays has advanced our ability to identify their targets and regulatory role. This chapter discusses a unique procedure that combines functional extract-based activity assay with large-scale screening utilities of protein microarrays. This “PTM-profiling” system offers advantages in quantitatively identifying modifications in an unbiased manner in the context of specific cellular conditions. While the possibilities of studying PTMs in different settings are enormous, the immune system presents an attractive model for studying the effects of perturbations in PTMs, and specifically the ubiquitin system, as these were already implicated in both immune function and dysfunction. This chapter discusses the significance of PTM profiling in addressing basic questions in immunology. We describe detailed protocols for the preparation of functional cell extracts from immune cell cultures, following differentiation or induced signals, and screening PTMs on protein arrays, as well as basic guidelines for data analysis and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Merbl Y, Refour P, Patel H et al (2013) Profiling of ubiquitin-like modifications reveals features of mitotic control. Cell 152:1160–1172. doi:10.1016/j.cell.2013.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479. doi:10.1146/annurev.biochem.67.1.425

    Article  CAS  PubMed  Google Scholar 

  3. Park Y, Jin H, Aki D et al (2014) The ubiquitin system in immune regulation. Adv Immunol 124:17–66. doi:10.1016/B978-0-12-800147-9.00002-9

    Article  PubMed  Google Scholar 

  4. Wang J, Maldonado MA (2006) The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol 3:255–261

    CAS  PubMed  Google Scholar 

  5. Liu Y-C (2004) Ubiquitin ligases and the immune response. Annu Rev Immunol 22:81–127. doi:10.1146/annurev.immunol.22.012703.104813

    Article  PubMed  Google Scholar 

  6. Davis ME, Gack MU (2015) Ubiquitination in the antiviral immune response. Virology 479-480:52–65. doi:10.1016/j.virol.2015.02.033

    Article  CAS  PubMed  Google Scholar 

  7. Gómez-Martín D, Díaz-Zamudio M, Alcocer-Varela J (2008) Ubiquitination system and autoimmunity: the bridge towards the modulation of the immune response. Autoimmun Rev 7:284–290. doi:10.1016/j.autrev.2007.11.026

    Article  PubMed  Google Scholar 

  8. Ciechanover A, Schwartz AL (2004) The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim Biophys Acta 1695:3–17. doi:10.1016/j.bbamcr.2004.09.018

    Article  CAS  PubMed  Google Scholar 

  9. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. doi:10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  10. Kirkin V, Dikic I (2007) Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 19:199–205. doi:10.1016/j.ceb.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  11. Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18:579–586. doi:10.1038/ncb3358

    Article  CAS  PubMed  Google Scholar 

  12. Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563. doi:10.1038/nrm2731

    Article  CAS  PubMed  Google Scholar 

  13. Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20:1242–1253. doi:10.1038/nm.3739

    Article  CAS  PubMed  Google Scholar 

  14. Schartner JM, Fathman CG, Seroogy CM (2007) Preservation of self: an overview of E3 ubiquitin ligases and T cell tolerance. Semin Immunol 19:188–196. doi:10.1016/j.smim.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y-C, Penninger J, Karin M (2005) Immunity by ubiquitylation: a reversible process of modification. Nat Rev Immunol 5:941–952. doi:10.1038/nri1731

    Article  CAS  PubMed  Google Scholar 

  16. Chen ZJ (2005) Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol 7:758–765. doi:10.1038/ncb0805-758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smahi A, Courtois G, Vabres P et al (2000) Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The international Incontinentia Pigmenti (IP) consortium. Nature 405:466–472. doi:10.1038/35013114

    Article  CAS  PubMed  Google Scholar 

  18. Döffinger R, Smahi A, Bessia C et al (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet 27:277–285. doi:10.1038/85837

    Article  PubMed  Google Scholar 

  19. Orange JS, Brodeur SR, Jain A et al (2002) Deficient natural killer cell cytotoxicity in patients with IKK-gamma/NEMO mutations. J Clin Invest 109:1501–1509. doi:10.1172/JCI14858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Majumdar I, Paul J (2014) The deubiquitinase A20 in immunopathology of autoimmune diseases. Autoimmunity 47(5):307–319. doi:10.3109/08916934.2014.900756

    Article  CAS  PubMed  Google Scholar 

  21. Ma A, Malynn BA (2012) A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol 12:774–785. doi:10.1038/nri3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Compagno M, Lim WK, Grunn A et al (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459:717–721. doi:10.1038/nature07968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kato M, Sanada M, Kato I et al (2009) Frequent inactivation of A20 in B-cell lymphomas. Nature 459:712–716. doi:10.1038/nature07969

    Article  CAS  PubMed  Google Scholar 

  24. Novak U, Rinaldi A, Kwee I et al (2009) The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 113:4918–4921. doi:10.1182/blood-2008-08-174110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmitz R, Stanelle J, Hansmann M-L, Küppers R (2009) Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu Rev Pathol 4:151–174. doi:10.1146/annurev.pathol.4.110807.092209

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334. doi:10.1146/annurev.immunol.21.120601.141110

    Article  CAS  PubMed  Google Scholar 

  27. Bachmaier K, Krawczyk C, Kozieradzki I et al (2000) Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403:211–216. doi:10.1038/35003228

    Article  CAS  PubMed  Google Scholar 

  28. Paolino M, Thien CBF, Gruber T et al (2011) Essential role of E3 ubiquitin ligase activity in Cbl-b-regulated T cell functions. J Immunol 186:2138–2147. doi:10.4049/jimmunol.1003390

    Article  CAS  PubMed  Google Scholar 

  29. Jeon M-S, Atfield A, Venuprasad K et al (2004) Essential role of the E3 ubiquitin ligase Cbl-b in T cell Anergy induction. Immunity 21:167–177. doi:10.1016/j.immuni.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  30. Gómez-Martín D, Ibarra-Sánchez M, Romo-Tena J et al (2013) Casitas B lineage lymphoma b is a key regulator of peripheral tolerance in systemic lupus erythematosus. Arthritis Rheum 65:1032–1042. doi:10.1002/art.37833

    Article  PubMed  Google Scholar 

  31. Doníz-Padilla L, Martínez-Jiménez V, Niño-Moreno P et al (2011) Expression and function of Cbl-b in T cells from patients with systemic lupus erythematosus, and detection of the 2126 a/G Cblb gene polymorphism in the Mexican mestizo population. Lupus 20:628–635. doi:10.1177/0961203310394896

    Article  PubMed  Google Scholar 

  32. Stürner KH, Borgmeyer U, Schulze C et al (2014) A multiple sclerosis-associated variant of CBLB links genetic risk with type I IFN function. J Immunol 193:4439–4447. doi:10.4049/jimmunol.1303077

    Article  PubMed  Google Scholar 

  33. Anandasabapathy N, Ford GS, Bloom D et al (2003) GRAIL: an E3 ubiquitin ligase that inhibits cytokine Gene transcription is expressed in Anergic CD4+ T cells. Immunity 18:535–547. doi:10.1016/S1074-7613(03)00084-0

    Article  CAS  PubMed  Google Scholar 

  34. Heissmeyer V, Macián F, Im S-H et al (2004) Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol 5:255–265. doi:10.1038/ni1047

    Article  CAS  PubMed  Google Scholar 

  35. Sande OJ, Karim AF, Li Q et al (2016) Mannose-capped Lipoarabinomannan from mycobacterium tuberculosis induces CD4+ T cell Anergy via GRAIL. J Immunol 196:691–702. doi:10.4049/jimmunol.1500710

    Article  CAS  PubMed  Google Scholar 

  36. Gu H, Chiang YJ, Kole HK et al (2000) Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403:216–220. doi:10.1038/35003235

    Article  PubMed  Google Scholar 

  37. Lohr NJ, Molleston JP, Strauss KA et al (2010) Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am J Hum Genet 86:447–453. doi:10.1016/j.ajhg.2010.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Williamson A, Jin L, Rape M (2009) Preparation of synchronized human cell extracts to study ubiquitination and degradation. Methods Mol Biol 545:301–312. doi:10.1007/978-1-60327-993-2_19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Yifat Merbl is supported by the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (grant No. 1775/12), and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avital Eisenberg-Lerner or Yifat Merbl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Eisenberg-Lerner, A., Regev, I., Merbl, Y. (2017). Post-Translational Modification Profiling-Functional Proteomics for the Analysis of Immune Regulation. In: Lazar, I., Kontoyianni, M., Lazar, A. (eds) Proteomics for Drug Discovery. Methods in Molecular Biology, vol 1647. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7201-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7201-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7200-5

  • Online ISBN: 978-1-4939-7201-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics