Skip to main content

Real-Time Dual MRI for Predicting and Subsequent Validation of Intra-Arterial Stem Cell Delivery to the Central Nervous System

  • Protocol
  • First Online:
Stem Cell Technologies in Neuroscience

Part of the book series: Neuromethods ((NM,volume 126))

  • 1273 Accesses

Abstract

Stem cell therapy for neurological disorders reached a pivotal point when the efficacy of several cell types was demonstrated in small-animal models. Translation of stem cell therapy is contingent upon overcoming the challenge of effective cell delivery to the human brain, which has a volume of ~1000 times larger than that of the mouse. Intra-arterial (IA) injection can achieve a broad, global, but if needed also spatially targeted biodistribution; however, its utility has been limited by unpredictable cell destination and homing as dictated by the vascular territory, as well as by safety concerns.

We show here that high-speed MRI can be used to visualize the intravascular distribution of a superparamagnetic iron oxide contrast agent and can thus be used to accurately predict the distribution of IA administered stem cells. Moreover, high-speed MRI enables the real-time visualization of cell homing, providing the opportunity for immediate intervention in the case of undesired biodistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Janowski M, Engels C, Gorelik M, Lyczek A, Bernard S, Bulte JW, Walczak P (2014) Survival of neural progenitors allografted into the CNS of immunocompetent recipients is highly dependent on transplantation site. Cell Transplant 23(2):253–262. doi:10.3727/096368912X661328

    Article  CAS  PubMed  Google Scholar 

  2. Janowski M, Wagner DC, Boltze J (2015) Stem cell-based tissue replacement after stroke: factual necessity or notorious fiction? Stroke 46(8):2354–2363. doi:10.1161/STROKEAHA.114.007803

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cougo-Pinto PT, Chandra RV, Simonsen CZ, Hirsch JA, Leslie-Mazwi T (2015) Intra-arterial therapy for acute ischemic stroke: a golden age. Curr Treat Options Neurol 17(7):360. doi:10.1007/s11940-015-0360-7

    Article  PubMed  Google Scholar 

  4. Walczak P, Kedziorek DA, Gilad AA, Barnett BP, Bulte JW (2007) Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: the case of the shiverer dysmyelinated mouse brain. Magn Reson Med 58(2):261–269. doi:10.1002/mrm.21280

    Article  CAS  PubMed  Google Scholar 

  5. Puppi J, Mitry RR, Modo M, Dhawan A, Raja K, Hughes RD (2011) Use of a clinically approved iron oxide MRI contrast agent to label human hepatocytes. Cell Transplant 20(6):963–975. doi:10.3727/096368910X543367

    Article  PubMed  Google Scholar 

  6. Puppi J, Modo M, Dhawan A, Lehec SC, Mitry RR, Hughes RD (2014) Ex vivo magnetic resonance imaging of transplanted hepatocytes in a rat model of acute liver failure. Cell Transplant 23(3):329–343. doi:10.3727/096368913X663596

    Article  PubMed  Google Scholar 

  7. Song M, Kim Y, Kim Y, Ryu S, Song I, Kim SU, Yoon BW (2009) MRI tracking of intravenously transplanted human neural stem cells in rat focal ischemia model. Neurosci Res 64(2):235–239. doi:10.1016/j.neures.2009.03.006

    Article  PubMed  Google Scholar 

  8. Bulte JW (2009) In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol 193(2):314–325. doi:10.2214/AJR.09.3107

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sheu AY, Zhang Z, Omary RA, Larson AC (2013) MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: preclinical studies in a rodent model. Invest Radiol 48(6):492–499. doi:10.1097/RLI.0b013e31827994e5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gorelik M, Orukari I, Wang J, Galpoththawela S, Kim H, Levy M, Gilad AA, Bar-Shir A, Kerr DA, Levchenko A, Bulte JW, Walczak P (2012) Use of MR cell tracking to evaluate targeting of glial precursor cells to inflammatory tissue by exploiting the very late antigen-4 docking receptor. Radiology 265(1):175–185. doi:10.1148/radiol.12112212

    Article  PubMed  PubMed Central  Google Scholar 

  11. Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PC, Huang J, Bulte JW (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39(5):1569–1574. doi:10.1161/STROKEAHA.107.502047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walczak P, Wojtkiewicz J, Nowakowski A, Habich A, Holak P, Xu J, Adamiak Z, Chehade M, Pearl MS, Gailloud P, Lukomska B, Maksymowicz W, Bulte JW, Janowski M (2016) Real-time MRI for precise and predictable intra-arterial stem cell delivery to the central nervous system. J Cereb Blood Flow Metab, IN PRESS. doi:10.1177/0271678X16665853

    Google Scholar 

  13. Phillips AW, Falahati S, DeSilva R, Shats I, Marx J, Arauz E, Kerr DA, Rothstein JD, Johnston MV, Fatemi A (2012) Derivation of glial restricted precursors from E13 mice. J Vis Exp 64:3462. doi:10.3791/3462

    Google Scholar 

  14. Muhammad G, Jablonska A, Rose L, Walczak P, Janowski M (2015) Effect of MRI tags: SPIO nanoparticles and 19F nanoemulsion on various populations of mouse mesenchymal stem cells. Acta Neurobiol Exp (Wars) 75(2):144–159

    Google Scholar 

  15. Kedziorek DA, Muja N, Walczak P, Ruiz-Cabello J, Gilad AA, Jie CC, Bulte JW (2010) Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn Reson Med 63(4):1031–1043. doi:10.1002/mrm.22290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Janowski M, Walczak P, Pearl MS (2015) Predicting and optimizing the territory of blood-brain barrier opening by superselective intra-arterial cerebral infusion under dynamic susceptibility contrast MRI guidance. J Cereb Blood Flow Metab. doi:10.1177/0271678X15615875

    PubMed  PubMed Central  Google Scholar 

  17. Janowski M, Gornicka-Pawlak E, Kozlowska H, Domanska-Janik K, Gielecki J, Lukomska B (2008) Structural and functional characteristic of a model for deep-seated lacunar infarct in rats. J Neurol Sci 273(1–2):40–48. doi:10.1016/j.jns.2008.06.019

    Article  PubMed  Google Scholar 

  18. Janowski M, Lyczek A, Engels C, Xu J, Lukomska B, Bulte JW, Walczak P (2013) Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. J Cereb Blood Flow Metab 33(6):921–927. doi:10.1038/jcbfm.2013.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gorelik M, Janowski M, Galpoththawela C, Rifkin R, Levy M, Lukomska B, Kerr DA, Bulte JW, Walczak P (2012) Noninvasive monitoring of immunosuppressive drug efficacy to prevent rejection of intracerebral glial precursor allografts. Cell Transplant 21(10):2149–2157. doi:10.3727/096368912X636911

    Article  PubMed  Google Scholar 

  20. Thornhill RE, Chen S, Rammo W, Mikulis DJ, Kassner A (2010) Contrast-enhanced MR imaging in acute ischemic stroke: T2* measures of blood-brain barrier permeability and their relationship to T1 estimates and hemorrhagic transformation. AJNR Am J Neuroradiol 31(6):1015–1022. doi:10.3174/ajnr.A2003

    Article  CAS  PubMed  Google Scholar 

  21. Yavagal DR, Lin B, Raval AP, Garza PS, Dong C, Zhao W, Rangel EB, McNiece I, Rundek T, Sacco RL, Perez-Pinzon M, Hare JM (2014) Efficacy and dose-dependent safety of intra-arterial delivery of mesenchymal stem cells in a rodent stroke model. PLoS One 9(5):e93735. doi:10.1371/journal.pone.0093735

    Article  PubMed  PubMed Central  Google Scholar 

  22. Toyoshima A, Yasuhara T, Kameda M, Morimoto J, Takeuchi H, Wang F, Sasaki T, Sasada S, Shinko A, Wakamori T, Okazaki M, Kondo A, Agari T, Borlongan CV, Date I (2015) Intra-arterial transplantation of allogeneic mesenchymal stem cells mounts neuroprotective effects in a transient ischemic stroke model in rats: analyses of therapeutic time window and its mechanisms. PLoS One 10(6):e0127302. doi:10.1371/journal.pone.0127302

    Article  PubMed  PubMed Central  Google Scholar 

  23. Du S, Guan J, Mao G, Liu Y, Ma S, Bao X, Gao J, Feng M, Li G, Ma W, Yang Y, Zhao RC, Wang R (2014) Intra-arterial delivery of human bone marrow mesenchymal stem cells is a safe and effective way to treat cerebral ischemia in rats. Cell Transplant 23(Suppl 1):S73–S82. doi:10.3727/096368914X685023

    Article  PubMed  Google Scholar 

  24. Zeira O, Asiag N, Aralla M, Ghezzi E, Pettinari L, Martinelli L, Zahirpour D, Dumas MP, Lupi D, Scaccia S, Konar M, Cantile C (2015) Adult autologous mesenchymal stem cells for the treatment of suspected non-infectious inflammatory diseases of the canine central nervous system: safety, feasibility and preliminary clinical findings. J Neuroinflammation 12:181. doi:10.1186/s12974-015-0402-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Silachev DN, Plotnikov EY, Babenko VA, Danilina TI, Zorov LD, Pevzner IB, Zorov DB, Sukhikh GT (2015) Intra-arterial administration of multipotent mesenchymal stromal cells promotes functional recovery of the brain after traumatic brain injury. Bull Exp Biol Med 159(4):528–533. doi:10.1007/s10517-015-3009-3

    Article  CAS  PubMed  Google Scholar 

  26. Oh SH, Choi C, Chang DJ, Shin DA, Lee N, Jeon I, Sung JH, Lee H, Hong KS, Ko JJ, Song J (2015) Early neuroprotective effect with lack of long-term cell replacement effect on experimental stroke after intra-arterial transplantation of adipose-derived mesenchymal stromal cells. Cytotherapy 17(8):1090–1103. doi:10.1016/j.jcyt.2015.04.007

    Article  PubMed  Google Scholar 

  27. Yang B, Migliati E, Parsha K, Schaar K, Xi X, Aronowski J, Savitz SI (2013) Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke 44(12):3463–3472. doi:10.1161/STROKEAHA.111.000821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brenneman M, Sharma S, Harting M, Strong R, Cox CS Jr, Aronowski J, Grotta JC, Savitz SI (2010) Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J Cereb Blood Flow Metab 30(1):140–149. doi:10.1038/jcbfm.2009.198

    Article  PubMed  Google Scholar 

  29. Cui LL, Kerkela E, Bakreen A, Nitzsche F, Andrzejewska A, Nowakowski A, Janowski M, Walczak P, Boltze J, Lukomska B, Jolkkonen J (2015) The cerebral embolism evoked by intra-arterial delivery of allogeneic bone marrow mesenchymal stem cells in rats is related to cell dose and infusion velocity. Stem Cell Res Ther 6:11. doi:10.1186/scrt544

    Article  PubMed  PubMed Central  Google Scholar 

  30. Erturk MA, El-Sharkawy AM, Bottomley PA (2012) Interventional loopless antenna at 7 T. Magn Reson Med 68(3):980–988. doi:10.1002/mrm.23280

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mary McAllister for editorial assistance, and Lydia Gregg for preparing Figs. 1 and 4b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslaw Janowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Walczak, P., Janowski, M. (2017). Real-Time Dual MRI for Predicting and Subsequent Validation of Intra-Arterial Stem Cell Delivery to the Central Nervous System. In: Srivastava, A., Snyder, E., Teng, Y. (eds) Stem Cell Technologies in Neuroscience. Neuromethods, vol 126. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7024-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7024-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7022-3

  • Online ISBN: 978-1-4939-7024-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics