Skip to main content

Image-Based High Content Screening: Automating the Quantification Process for DNA Damage-Induced Foci

  • Protocol
  • First Online:
ATM Kinase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1599))

Abstract

Visual inspection of cellular activities based on conventional fluorescence microscope is a fundamental tool to study the role of DNA damage response (DDR). In the context of drug discovery where the capture of thousands of images is required across parallel experiments, this presents a challenge to data collection and analysis. Manual scoring is laborious and often reliant on trained personnel to intuit biological meaning through visual reasoning. On the other hand, high content screening combines the automation of microscopy image acquisition and analysis in a single platform to quantify cellular events of interests. The data generated is rapid and accurate, lessening the bias of human interpretation. Herein, this chapter will describe an image-based high content screen approach and the data analysis of Ataxia-Telangiectasia Mutated (ATM) DNA damage-induced foci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim K-T, Lee HW, Lee H-O, Kim SC, Seo YJ, Chung W, Eum HH, Nam D-H, Kim J, Joo KM, Park W-Y (2015) Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol 16:127

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK, Castoreno AB, Eggert US, Root DE, Golland P, Sabatini DM (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci 106(6):1826–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin HL, Adams M, Higgins J, Bond J, Morrison EE, Bell SM, Warriner S, Nelson A, Tomlinson DC (2014) High-content, high-throughput screening for the identification of cytotoxic compounds based on cell morphology and cell proliferation markers. PLoS One 9(2):e88338

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rodier F, Coppé J-P, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FMG (2015) Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15:166–180

    Article  CAS  PubMed  Google Scholar 

  6. Ziv O, Zeisel A, Mirlas-Neisberg N, Swain U, Nevo R, Ben-Chetrit N, Martelli MP, Rossi R, Schiesser S, Canman CE, Carell T, Geacintov NE, Falini B, Domany E, Livneh Z (2014) Identification of novel DNA-damage tolerance genes reveals regulation of translesion DNA synthesis by nucleophosmin. Nat Commun 5(5437):1–13

    Google Scholar 

  7. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oberle C, Blattner C (2010) Regulation of the DNA damage response to DSBs by post-translational modifications. Curr Genomics 11(3):184–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9:759–769

    Article  CAS  PubMed  Google Scholar 

  10. Lindsey-Boltz LA, Sancar A (2011) Tethering DNA damage checkpoint mediator proteins topoisomerase IIβ-binding protein 1 (TopBP1) and claspin to DNA activates ataxia-telangiectasia mutated and RAD3-related (ATR) phosphorylation of checkpoint kinase 1 (Chk1). J Biol Chem 286(22):19229–19236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang B, Matsuoka S, Carpenter PB, Elledge SJ (2002) 53BP1, a mediator of the DNA damage checkpoint. Science 298(5597):1435–1438

    Article  CAS  PubMed  Google Scholar 

  12. Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429

    Article  CAS  PubMed  Google Scholar 

  13. Neumaier T, Swenson J, Pham C, Polyzos A, Lo AT, Yang P, Dyball J, Asaithamby A, Chen DJ, Bissell MJ, Thalhammer S, Costes SV (2012) Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci 109(2):443–448

    Article  PubMed  Google Scholar 

  14. Takai H, Smogorzewska A, Td L (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17):1549–1556

    Article  CAS  PubMed  Google Scholar 

  15. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760. doi:10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  16. Lim YC, Roberts TL, Day BW, Stringer BW, Kozlov S, Fazry S, Bruce ZC, Ensbey KS, Walker DG, Boyd AW, Lavin MF (2014) Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells. Mol Oncol 8(8):1603–1615

    Article  CAS  PubMed  Google Scholar 

  17. Lavin MF, Kozlov S (2007) ATM activation and DNA damage response. Cell Cycle 6(8):931–942

    Article  CAS  PubMed  Google Scholar 

  18. Collis SJ, Schwaninger JM, Ntambi AJ, Keller TW, Nelson WG, Dillehay LE, DeWeese TL (2004) Evasion of early cellular response mechanisms following low level radiation-induced DNA damage. J Biol Chem 279(48):49624–49632

    Article  CAS  PubMed  Google Scholar 

  19. Markova E, Schultz N, Belyaev IY (2007) Kinetics and dose-response of residual 53BP1/g-H2AX foci: co-localization, relationship with DSB repair and clonogenic survival. Int J Radiat Biol 83(5):319–329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Cancer Council Queensland and the Brain Cancer Discovery Collaborative (BCDC) of Cure Brain Cancer Foundation, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chieh Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Lim, Y.C. (2017). Image-Based High Content Screening: Automating the Quantification Process for DNA Damage-Induced Foci. In: Kozlov, S. (eds) ATM Kinase. Methods in Molecular Biology, vol 1599. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6955-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6955-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6953-1

  • Online ISBN: 978-1-4939-6955-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics