Skip to main content

Live Cell Imaging to Study Real-Time ATM-Mediated Recruitment of DNA Repair Complexes to Sites of Ionizing Radiation-Induced DNA Damage

  • Protocol
  • First Online:
ATM Kinase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1599))

Abstract

Measurements of protein recruitment and the formation of repair complexes at DNA double-strand breaks in real time provide valuable insight into the regulation of the early DNA damage response. Here, we describe the use of live cell microscopy in combination with ionizing radiation as a tool to evaluate the influence of ATM and its site-specific phosphorylation of target proteins on these processes. Recommendations are made for the preparation of the cells and the design of specialized cell chambers for the localized (and/or targeted) irradiation with charged particles at accelerator beamlines as well as the microscopic equipment and protocol to obtain high-resolution, sensitive fluorescence measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shiloh Y (2014) ATM: expanding roles as a chief guardian of genome stability. Exp Cell Res 329(1):154–161

    Article  CAS  PubMed  Google Scholar 

  2. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  3. Jungmichel S, Stucki M (2010) MDC1: the art of keeping things in focus. Chromosoma 119(4):337–349

    Article  CAS  PubMed  Google Scholar 

  4. Jungmichel S, Clapperton JA, Lloyd J, Hari FJ, Spycher C, Pavic L, Li J, Haire LF, Bonalli M, Larsen DH, Lukas C, Lukas J, MacMillan D, Nielsen ML, Stucki M, Smerdon SJ (2012) The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator. Nucleic Acids Res 40(9):3913–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK (2011) ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol Life Sci 68(18):2977–3006

    Article  CAS  PubMed  Google Scholar 

  6. Kijas AW, Lim YC, Bolderson E, Cerosaletti K, Gatei M, Jakob B, Tobias F, Taucher-Scholz G, Gueven N, Oakley G, Concannon P, Wolvetang E, Khanna KK, Wiesmüller L, Lavin MF (2015) ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1. Nucleic Acids Res 43(17):8352–8367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 3(8–9):997–1007

    Article  CAS  Google Scholar 

  8. Lukas C, Bartek J, Lukas J (2005) Imaging of protein movement induced by chromosomal breakage: tiny ‘local’ lesions pose great 'global' challenges. Chromosoma 114(3):146–154

    Article  CAS  PubMed  Google Scholar 

  9. Tobias F, Durante M, Taucher-Scholz G, Jakob B (2010) Spatiotemporal analysis of DNA repair using charged particle radiation. Mutat Res 704(1-3):54–60

    Article  CAS  PubMed  Google Scholar 

  10. Tobias F, Löb D, Lengert N, Durante M, Drossel B, Taucher-Scholz G, Jakob B (2013) Spatiotemporal dynamics of early DNA damage response proteins on complex DNA lesions. PLoS One 8(2):e57953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gatei M, Jakob B, Chen P, Kijas AW, Becherel OJ, Gueven N, Birrell G, Lee JH, Paull TT, Lerenthal Y, Fazry S, Taucher-Scholz G, Kalb R, Schindler D, Waltes R, Dörk T, Lavin MF (2011) ATM protein-dependent phosphorylation of Rad50 protein regulates DNA repair and cell cycle control. J Biol Chem 286(36):31542–31556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kozlov SV, Graham ME, Jakob B, Tobias F, Kijas AW, Tanuji M, Chen P, Robinson PJ, Taucher-Scholz G, Suzuki K, So S, Chen D, Lavin MF (2011) Autophosphorylation and ATM activation: additional sites add to the complexity. J Biol Chem 286(11):9107–9119

    Article  CAS  PubMed  Google Scholar 

  13. Splinter J, Jakob B, Lang M, Yano K, Engelhardt J, Hell SW, Chen DJ, Durante M, Taucher-Scholz G (2010) Biological dose estimation of UVA laser microirradiation utilizing charged particle-induced protein foci. Mutagenesis 25(3):289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thévenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41

    Article  PubMed  Google Scholar 

  15. Pataky K, Villanueva G, Liani A, Zgheib O, Jenkins N, Halazonetis DJ, Halazonetis TD, Brugger J (2009) Microcollimator for micrometer-wide stripe irradiation of cells using 20–30 keV X rays. Radiat Res 172(2):252–259

    Article  CAS  PubMed  Google Scholar 

  16. Folkard M, Schettino G, Vojnovic B, Gilchrist S, Michette AG, Pfauntsch SJ, Prise KM, Michael BD (2001) A focused ultrasoft x-ray microbeam for targeting cells individually with submicrometer accuracy. Radiat Res 156(6):796–804

    Article  CAS  PubMed  Google Scholar 

  17. Barberet P, Seznec H (2015) Advances in microbeam technologies and applications to radiation biology. Radiat Prot Dosimetry 166(1-4):182–187

    Article  CAS  PubMed  Google Scholar 

  18. Jakob B, Splinter J, Conrad S, Voss KO, Zink D, Durante M, Löbrich M, Taucher-Scholz G (2011) DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res 39(15):6489–6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jakob B, Splinter J, Durante M, Taucher-Scholz G (2009) Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci U S A 106(9):3172–3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stap J, Krawczyk PM, Van Oven CH, Barendsen GW, Essers J, Kanaar R, Aten JA (2008) Induction of linear tracks of DNA double-strand breaks by alpha-particle irradiation of cells. Nat Methods 5(3):261–266

    Article  CAS  PubMed  Google Scholar 

  21. Khan R, Becker A, Taucher-Scholz G, Durante M, Fehrenbacher G, Jakob B (2014) Construction of a X-ray cabinet for live cell experiments. GSI Sci Rep 1:242

    Google Scholar 

  22. Abdollahi E, Taucher-Scholz G, Durante M, Jakob B (2015) Upgrading the GSI beamline microscope with a confocal fluorescence lifetime scanner to monitor charged particle induced chromatin decondensation in living cells. Nucl Instrum Methods Phys Res, Sect B 365(Pt B):626–630

    Article  CAS  Google Scholar 

  23. Merk B., Voss KO., Müller I.,·Fischer BE., Jakob B., Taucher-Scholz G., Trautmann C., and Durante M. (2013) Photobleaching setup for the biological end-station of the darmstadt heavy-ion microprobe. Nucl Instrum Methods Phys Res, Sect B 306, 81–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by BMBF Grants 02NUK037A, 02NUK001A and DFG GRK1657.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Jakob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jakob, B., Taucher-Scholz, G. (2017). Live Cell Imaging to Study Real-Time ATM-Mediated Recruitment of DNA Repair Complexes to Sites of Ionizing Radiation-Induced DNA Damage. In: Kozlov, S. (eds) ATM Kinase. Methods in Molecular Biology, vol 1599. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6955-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6955-5_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6953-1

  • Online ISBN: 978-1-4939-6955-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics