Skip to main content

Mapping Biological Networks from Quantitative Data-Independent Acquisition Mass Spectrometry: Data to Knowledge Pipelines

  • Protocol
  • First Online:
Protein Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1558))

Abstract

Data-independent acquisition mass spectrometry (DIA-MS) strategies and applications provide unique advantages for qualitative and quantitative proteome probing of a biological sample allowing constant sensitivity and reproducibility across large sample sets. These advantages in LC-MS/MS are being realized in fundamental research laboratories and for clinical research applications. However, the ability to translate high-throughput raw LC-MS/MS proteomic data into biological knowledge is a complex and difficult task requiring the use of many algorithms and tools for which there is no widely accepted standard and best practices are slowly being implemented. Today a single tool or approach inherently fails to capture the full interpretation that proteomics uniquely supplies, including the dynamics of quickly reversible chemically modified states of proteins, irreversible amino acid modifications, signaling truncation events, and, finally, determining the presence of protein from allele-specific transcripts. This chapter highlights key steps and publicly available algorithms required to translate DIA-MS data into knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404:939–965. doi:10.1007/s00216-012-6203-4

    Article  CAS  PubMed  Google Scholar 

  2. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207. doi:10.1038/nature01511

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Fonslow BR, Shan B et al (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113:2343–2394. doi:10.1021/cr3003533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nesvizhskii AI (2007) Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol Biol 367:87–119. doi:10.1385/1-59745-275-0:87

    CAS  PubMed  Google Scholar 

  5. Bateman NW, Goulding SP, Shulman NJ et al (2014) Maximizing peptide identification events in proteomic workflows using data-dependent acquisition (DDA). Mol Cell Proteomics 13:329–338. doi:10.1074/mcp.M112.026500

    Article  CAS  PubMed  Google Scholar 

  6. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717. doi:10.1074/mcp.O111.016717

    Article  PubMed  PubMed Central  Google Scholar 

  7. Röst HL, Rosenberger G, Navarro P et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223. doi:10.1038/nbt.2841

    Article  PubMed  Google Scholar 

  8. Purvine S, Eppel J-T, Yi EC, Goodlett DR (2003) Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3:847–850. doi:10.1002/pmic.200300362

    Article  CAS  PubMed  Google Scholar 

  9. Myung S, Lee YJ, Moon MH et al (2003) Development of high-sensitivity ion trap ion mobility spectrometry time-of-flight techniques: a high-throughput nano-LC-IMS-TOF separation of peptides arising from a Drosophila protein extract. Anal Chem 75:5137–5145. doi:10.1021/ac030107f

    Article  CAS  PubMed  Google Scholar 

  10. Venable JD, Dong M-Q, Wohlschlegel J et al (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1:39–45. doi:10.1038/nmeth705

    Article  CAS  PubMed  Google Scholar 

  11. Panchaud A, Jung S, Shaffer SA et al (2011) Faster, quantitative, and accurate precursor acquisition independent from ion count. Anal Chem 83:2250–2257. doi:10.1021/ac103079q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carr SA, Abbatiello SE, Ackermann BL et al (2014) Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 13:907–917. doi:10.1074/mcp.M113.036095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yates JR, Eng JK, McCormack AL, Schieltz D (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436

    Article  CAS  PubMed  Google Scholar 

  14. Mann M, Wilm M (1995) Electrospray mass spectrometry for protein characterization. Trends Biochem Sci 20:219–224

    Article  CAS  PubMed  Google Scholar 

  15. Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4:798–806. doi:10.1038/nmeth1100

    Article  CAS  PubMed  Google Scholar 

  16. Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8:33–41. doi:10.1016/j.cbpa.2003.12.009

    Article  PubMed  Google Scholar 

  17. Tsur D, Tanner S, Zandi E et al (2005) Identification of post-translational modifications by blind search of mass spectra. Nat Biotechnol 23:1562–1567. doi:10.1038/nbt1168

    Article  CAS  PubMed  Google Scholar 

  18. György B, Tóth E, Tarcsa E et al (2006) Citrullination: a posttranslational modification in health and disease. Int J Biochem Cell Biol 38:1662–1677. doi:10.1016/j.biocel.2006.03.008

    Article  PubMed  Google Scholar 

  19. Fert-Bober J, Giles JT, Holewinski RJ et al (2015) Citrullination of myofilament proteins in heart failure. Cardiovasc Res 108:232–242. doi:10.1093/cvr/cvv185

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bilbao A, Varesio E, Luban J et al (2015) Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics 15:964–980. doi:10.1002/pmic.201400323

    Article  CAS  PubMed  Google Scholar 

  21. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73:2092–2123. doi:10.1016/j.jprot.2010.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. MacLean B, Tomazela D, Shulman et al. (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968. Doi 10.1093/bioinformatics/btq054

  23. Bernhardt OM, Selevsek N, Gillet LC, et al. (2012) Spectronaut A fast and efficient algorithm for MRM-like processing of data independent acquisition (SWATH-MS) data. Proceedings of the 60th ASMS Conference on MAss Spectrometry and Allied Topics, 2012, Vancouver, BC, Canada.

    Google Scholar 

  24. Tsou C-C, Avtonomov D, Larsen B et al (2015) DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 12:258–264. doi:10.1038/nmeth.3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenberger G, Koh CC, Guo T et al (2014) A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci Data 1:140031. doi:10.1038/sdata.2014.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holewinski RJ, Parker SJ, Matlock AD et al. (2016) Methods for SWATH™: data independent acquisition on TripleTOF mass spectrometers. Methods Mol Biol. 1410:265–79. doi:10.1007/978-1-4939-3524-6_16.

  27. Escher C, Reiter L, MacLean B et al (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12:1111–1121. doi:10.1002/pmic.201100463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parker SJ, Rost H, Rosenberger G et al (2015) Identification of a set of conserved eukaryotic internal retention time standards for data-independent acquisition mass spectrometry. Mol Cell Proteomics 14:2800–2813. doi:10.1074/mcp.O114.042267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi M, Chang C-Y, Clough T et al (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30:2524–2526. doi:10.1093/bioinformatics/btu305

    Article  CAS  PubMed  Google Scholar 

  30. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452. doi:10.1093/nar/gku1003

    Article  PubMed  Google Scholar 

  31. Xia J, Gill EE, Hancock REW (2015) NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc 10:823–844. doi:10.1038/nprot.2015.052

    Article  CAS  PubMed  Google Scholar 

  32. Xia J, Benner MJ, Hancock REW (2014) NetworkAnalyst—integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res 42:W167–W174. doi:10.1093/nar/gku443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nepusz T, Yu H, Paccanaro A (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat Methods 9:471–472. doi:10.1038/nmeth.1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449. doi:10.1093/bioinformatics/bti551

    Article  CAS  PubMed  Google Scholar 

  35. Beausoleil SA, Villén J, Gerber SA et al (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24:1285–1292. doi:10.1038/nbt1240

    Article  CAS  PubMed  Google Scholar 

  36. Keller A, Bader SL, Kusebauch U et al (2016) Opening a SWATH window on posttranslational modifications: automated pursuit of modified peptides. Mol Cell Proteomics 15:1151–1163. doi:10.1074/mcp.M115.054478

    Article  CAS  PubMed  Google Scholar 

  37. Fermin D, Walmsley SJ, Gingras A-C et al (2013) LuciPHOr: algorithm for phosphorylation site localization with false localization rate estimation using modified target-decoy approach. Mol Cell Proteomics 12:3409–3419. doi:10.1074/mcp.M113.028928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manwar Hussain MR, Khan A, Ali Mohamoud HS (2014) From genes to health—challenges and opportunities. Front Pediatr 2:12. doi:10.3389/fped.2014.00012

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gligorijević V, Pržulj N (2015) Methods for biological data integration: perspectives and challenges. J R Soc Interface 12:20150571. doi:10.1098/rsif.2015.0571

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hornbeck PV, Kornhauser JM, Tkachev S et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270. doi:10.1093/nar/gkr1122

    Article  CAS  PubMed  Google Scholar 

  41. Dinkel H, Chica C, Via A et al (2011) Phospho.ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Res 39:D261–D267. doi:10.1093/nar/gkq1104

    Article  CAS  PubMed  Google Scholar 

  42. Wurgler-Murphy SM, King DM, Kennelly PJ (2004) The phosphorylation site database: a guide to the serine-, threonine-, and/or tyrosine-phosphorylated proteins in prokaryotic organisms. Proteomics 4:1562–1570. doi:10.1002/pmic.200300711

    Article  CAS  PubMed  Google Scholar 

  43. Gnad F, Ren S, Cox J et al (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8:R250. doi:10.1186/gb-2007-8-11-r250

    Article  PubMed  PubMed Central  Google Scholar 

  44. Heazlewood JL, Durek P, Hummel J et al (2008) PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36:D1015–D1021. doi:10.1093/nar/gkm812

    Article  CAS  PubMed  Google Scholar 

  45. Chaudhuri R, Sadrieh A, Hoffman NJ et al (2015) PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications. BMC Genomics 16:617. doi:10.1186/s12864-015-1820-x

    Article  PubMed  PubMed Central  Google Scholar 

  46. Linding R, Jensen LJ, Pasculescu A et al (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36:D695–D699. doi:10.1093/nar/gkm902

    Article  CAS  PubMed  Google Scholar 

  47. Lee T-Y, Bo-Kai Hsu J, Chang W-C, Huang H-D (2011) RegPhos: a system to explore the protein kinase-substrate phosphorylation network in humans. Nucleic Acids Res 39:D777–D787. doi:10.1093/nar/gkq970

    Article  CAS  PubMed  Google Scholar 

  48. Gupta R, Birch H, Rapacki K et al (1999) O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 27:370–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang J, Torii M, Liu H et al (2011) dbOGAP—an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinformatics 12:91. doi:10.1186/1471-2105-12-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chernorudskiy AL, Garcia A, Eremin EV et al (2007) UbiProt: a database of ubiquitylated proteins. BMC Bioinformatics 8:126. doi:10.1186/1471-2105-8-126

    Article  PubMed  PubMed Central  Google Scholar 

  51. Naegle KM, Gymrek M, Joughin BA et al (2010) PTMScout, a web resource for analysis of high throughput post-translational proteomics studies. Mol Cell Proteomics 9:2558–2570. doi:10.1074/mcp.M110.001206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Falquet L, Pagni M, Bucher P et al (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fuchs R (1991) MacPattern: protein pattern searching on the Apple Macintosh. Comput Appl Biosci 7:105–106

    CAS  PubMed  Google Scholar 

  55. Henikoff S, Henikoff JG (1991) Automated assembly of protein blocks for database searching. Nucleic Acids Res 19:6565–6572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tatusov RL, Altschul SF, Koonin EV (1994) Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks. Proc Natl Acad Sci USA 91:12091–12095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li H, Xing X, Ding G et al (2009) SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics 8:1839–1849. doi:10.1074/mcp.M900030-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human Protein Reference Database—2009 update. Nucleic Acids Res 37:D767–D772. doi:10.1093/nar/gkn892

    Article  CAS  PubMed  Google Scholar 

  59. Zhang P, Kirk JA, Ji W et al (2012) Multiple reaction monitoring to identify site-specific troponin I phosphorylated residues in the failing human heart. Circulation 126:1828–1837. doi:10.1161/CIRCULATIONAHA.112.096388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kooij V, Zhang P, Piersma SR et al (2013) PKCα-specific phosphorylation of the troponin complex in human myocardium: a functional and proteomics analysis. PLoS One 8:e74847. doi:10.1371/journal.pone.0074847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin L. Crowgey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Crowgey, E.L., Matlock, A., Venkatraman, V., Fert-Bober, J., Van Eyk, J.E. (2017). Mapping Biological Networks from Quantitative Data-Independent Acquisition Mass Spectrometry: Data to Knowledge Pipelines. In: Wu, C., Arighi, C., Ross, K. (eds) Protein Bioinformatics. Methods in Molecular Biology, vol 1558. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6783-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6783-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6781-0

  • Online ISBN: 978-1-4939-6783-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics