Skip to main content

Assessing Bacterial and Fungal Diversity in the Plant Endosphere

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1539))

Abstract

Plants are colonized various microorganisms including endophytes. These microbes can play an important role in agricultural production as they promote plant growth and/or enhance the resistance of their host plant against diseases and environmental stress conditions. Although culture-independent molecular approaches such as DNA barcoding have greatly enhanced our understanding of bacterial and fungal endophyte communities, there are some methodical problems when investigating endophyte diversity. One main issue are sequence contaminations such as plastid-derived rRNA gene sequences which are co-amplified due to their high homology to bacterial 16S rRNA genes. The same is true for plant and fungal ITS sequences. The application of highly specific-primers suppressing co-amplification of these sequence contaminations is a good solution for this issue. Here, we describe a detailed protocol for assessing bacterial and fungal endophyte diversity in plants using these primers in combination with next-generation sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A et al (2015) The hidden world within plants, ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M et al (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  3. Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M et al (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wemheuer F, Wemheuer B, Kretzschmar D, Pfeiffer B, Herzog S, Daniel R et al (2016) Impact of grassland management regimes on bacterial endophyte diversity differs with grass species. Lett Appl Microbiol 62:323. doi:10.1111/lam.12551

    Article  CAS  PubMed  Google Scholar 

  6. Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH (2016) Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405:381

    Article  CAS  Google Scholar 

  7. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7:e40863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 18:315–322

    Google Scholar 

  9. Chelius MK, Triplett EW (2001) The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  10. Lane DJ (1991) 16s/23s rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, NY, pp 115–175

    Google Scholar 

  11. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI et al (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    Article  PubMed  PubMed Central  Google Scholar 

  12. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  13. Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S et al (2010) The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  14. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ et al (2009) The Ribosomal Database Project, improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  15. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project, improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  16. R Core Team (2014) R, a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: http://www.R-project.org/

  17. Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  19. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Wemheuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wemheuer, B., Wemheuer, F. (2017). Assessing Bacterial and Fungal Diversity in the Plant Endosphere. In: Streit, W., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 1539. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6691-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6691-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6689-9

  • Online ISBN: 978-1-4939-6691-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics