Skip to main content

Novel Tools for the Functional Expression of Metagenomic DNA

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1539))

Abstract

Functional expression of genes from metagenomic libraries is limited by various factors including inefficient transcription and/or translation of target genes as well as improper folding and assembly of the corresponding proteins caused by the lack of appropriate chaperones and cofactors. It is now well accepted that the use of different expression hosts of distinct phylogeny and physiology can dramatically increase the rate of success. In the following chapter, we therefore describe tools and protocols allowing for the comparative heterologous expression of genes in five bacterial expression hosts, namely Escherichia coli, Pseudomonas putida, Bacillus subtilis, Burkholderia glumae, and Rhodobacter capsulatus. Different broad-host-range shuttle vectors are described that allow activity-based screening of metagenomic DNA in these bacteria. Furthermore, we describe the newly developed transfer-and-expression system TREX which comprises genetic elements essential to allow for expression of large clusters of functionally coupled genes in different microbial species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209

    Article  PubMed  PubMed Central  Google Scholar 

  2. Monciardini P, Iorio M, Maffioli S, Sosio M, Donadio S (2014) Discovering new bioactive molecules from microbial sources. Microbial Biotechnol 7:209–220

    Article  CAS  Google Scholar 

  3. Lee MH, Lee SW (2013) Bioprospecting potential of the soil metagenome: novel enzymes and bioactivities. Genomics Inform 11:114–120

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lombard N, Prestat E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78:31–49

    Article  CAS  PubMed  Google Scholar 

  5. Anderson RE, Sogin ML, Baross JA (2014) Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS One 9:e109696

    Article  PubMed  PubMed Central  Google Scholar 

  6. López-López O, Cerdán ME, González Siso MI (2014) New extremophilic lipases and esterases from metagenomics. Curr Protein Pept Sci 15:445–455

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102

    Article  CAS  PubMed  Google Scholar 

  8. Alcaide M, Stogios PJ, Lafraya A, Tchigvintsev A, Flick R, Bargiela R et al (2015) Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats. Environ Microbiol 17:332–345

    Article  CAS  PubMed  Google Scholar 

  9. Tchigvintsev A, Tran H, Popovic A, Kovacic F, Brown G, Flick R et al (2015) The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes. Appl Microbiol Biotechnol 99:2165–2178

    Article  CAS  PubMed  Google Scholar 

  10. Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V (2015) Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels 8:1–17

    Article  Google Scholar 

  11. McCarthy DM, Pearce DA, Patching JW, Fleming GT (2013) Contrasting responses to nutrient enrichment of prokaryotic communities collected from deep sea sites in the southern ocean. Biology (Basel) 2:1165–1188

    Google Scholar 

  12. McNamara PJ, LaPara TM, Novak PJ (2015) The effect of perfluorooctane sulfonate, exposure time, and chemical mixtures on methanogenic community structure and function. Microbiol Insights 8:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tan B, Fowler SJ, Abu Laban N, Dong X, Sensen CW, Foght J, Gieg LM (2015) Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. ISME J 9:2028–2045

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mori T, Kamei I, Hirai H, Kondo R (2014) Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures. Springerplus 3:365

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16:109–123

    Article  CAS  PubMed  Google Scholar 

  16. Saïdani N, Grando D, Valadié H, Bastien O, Maréchal E (2009) Potential and limits of in silico target discovery - case study of the search for new antimalarial chemotherapeutic targets. Infect Genet Evol 9:359–367

    Article  PubMed  Google Scholar 

  17. Galvão TC, Mohn WW, de Lorenzo V (2005) Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol 23:497–506

    Article  PubMed  Google Scholar 

  18. Trindade M, van Zyl LJ, Navarro-Fernández J, Abd Elrazak A (2015) Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 6:890

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vakhlu J, Sudan AK, Johri BN (2008) Metagenomics: future of microbial gene mining. Indian J Microbiol 48:202–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A (2015) Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front Microbiol 6:672

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ufarté L, Potocki-Veronese G, Laville E (2015) Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front Microbiol 6:563

    PubMed  PubMed Central  Google Scholar 

  22. Leis B, Angelov A, Liebl W (2013) Screening and expression of genes from metagenomes. Adv Appl Microbiol 83:1–68

    Article  CAS  PubMed  Google Scholar 

  23. Ekkers DM, Cretoiu MS, Kielak AM, Elsas JD (2012) The great screen anomaly—a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 93:1005–1020

    Article  CAS  PubMed  Google Scholar 

  24. Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T et al (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98:8099–8109

    Article  CAS  PubMed  Google Scholar 

  25. Leis B, Angelov A, Mientus M, Li H, Pham VT, Lauinger B et al (2015) Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Front Microbiol 6:275

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiang PX, Wang HS, Zhang C, Lou K, Xing XH (2010) Reconstruction of the violacein biosynthetic pathway from Duganella sp. B2 in different heterologous hosts. Appl Microbiol Biotechnol 86:1077–1088

    Article  CAS  PubMed  Google Scholar 

  27. McMahon MD, Guan C, Handelsman J, Thomas MG (2012) Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl Environ Microbiol 78:3622–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J (2013) How to achieve high-level expression in microbial enzymes: strategies and perspectives. Bioengineered 4:212–223

    Article  PubMed  PubMed Central  Google Scholar 

  29. Troeschel SC, Thies S, Link O, Real CI, Knops K, Wilhelm S et al (2012) Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and Pseudomonas putida. J Biotechnol 161:71–79

    Article  CAS  PubMed  Google Scholar 

  30. Domröse A, Klein AS, Hage-Hülsmann J, Thies S, Svensson V, Classen T et al (2015) Efficient recombinant production of prodigiosin in Pseudomonas putida. Front Microbiol 6:972

    Article  PubMed  PubMed Central  Google Scholar 

  31. Loeschcke A, Markert A, Wilhelm S, Wirtz A, Rosenau F, Jaeger KE, Drepper T (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2:22–33

    Article  CAS  PubMed  Google Scholar 

  32. Voget S, Knapp A, Poehlein A, Vollstedt C, Streit W, Daniel R, Jaeger KE (2015) Complete genome sequence of the lipase producing strain Burkholderia glumae PG1. J Biotechnol 204:3–4

    Article  CAS  PubMed  Google Scholar 

  33. Seo YS, Lim JY, Park J, Kim S, Lee HH, Cheong H et al (2015) Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. MBC Genomics 16:349

    Article  Google Scholar 

  34. Knapp A, Voget S, Gao R, Zaburannyi N, Krysciak D, Breuer M et al (2016) Mutations improving production and secretion of extracellular lipase by Burkholderia glumae PG1. Appl Microbiol Biotechnol 100:1265–1273

    Article  CAS  Google Scholar 

  35. Boekema BK, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F et al (2007) Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl Environ Microbiol 73:3838–3844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Katzke N, Arvani S, Bergmann R, Circolone F, Markert A, Svensson V et al (2010) A novel T7 RNA polymerase dependent expression system for high-level protein production in the phototrophic bacterium Rhodobacter capsulatus. Protein Expr Purif 69:137–146

    Article  CAS  PubMed  Google Scholar 

  37. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  38. Loeschcke A, Thies S (2015) Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 99:6197–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blank LM, Ebert BE, Buehler K, Bühler B (2010) Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis. Antioxid Redox Signal 13:349–394

    Article  CAS  PubMed  Google Scholar 

  40. Tiso T, Wierckx N, Blank L (2014) Non-pathogenic Pseudomonas as a platform for industrial biocatalysis. In: Grunwald P (ed) Industrial biocatalysis. Pan Stanford, Singapore, pp 323–372

    Google Scholar 

  41. Fernández M, Duque E, Pizarro-Tobías P, Van Dillewijn P, Wittich RM, Ramos JL (2009) Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene. Microbial Biotechnol 2:287–294

    Article  Google Scholar 

  42. Simon O, Klaiber I, Huber A, Pfannstiel J (2014) Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin. J Proteomics 109:212–227

    Article  CAS  PubMed  Google Scholar 

  43. Eggert T, Brockmeier U, Dröge MJ, Quax WJ, Jaeger KE (2003) Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiol Lett 225:319–324

    Article  CAS  PubMed  Google Scholar 

  44. Laible PD, Scott HN, Henry L, Hanson DK (2004) Towards higher-throughput membrane protein production for structural genomics initiatives. J Struct Funct Genomics 5:167–172

    Article  CAS  PubMed  Google Scholar 

  45. Masepohl B, Hallenbeck PC (2010) Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. Adv Exp Med Biol 675:49–70

    Article  CAS  PubMed  Google Scholar 

  46. Kyndt JA, Fitch JC, Berry RE, Stewart MC, Whitley K, Meyer TE et al (2012) Tyrosine triad at the interface between the Rieske iron-sulfur protein, cytochrome c1 and cytochrome c2 in the bc1 complex of Rhodobacter capsulatus. Biochim Biophys Acta 1817:811–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loppnow H, Libby P, Freudenberg M, Krauss JH, Weckesser J, Mayer H (1990) Cytokine induction by lipopolysaccharide (LPS) corresponds to lethal toxicity and is inhibited by nontoxic Rhodobacter capsulatus LPS. Infect Immun 58:3743–3750

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic-engineering-transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol 1:784–791

    Article  CAS  Google Scholar 

  49. Katzke N, Bergmann R, Jaeger KE, Drepper T (2012) Heterologous high-level gene expression in the photosynthetic bacterium Rhodobacter capsulatus. Methods Mol Biol 824:251–269

    Article  CAS  PubMed  Google Scholar 

  50. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, New York

    Google Scholar 

  51. Vogel HJ, Bonner DM (1956) Acetylornithase of Escherichia coli – partial purification and some properties. J Biol Chem 218:97–106

    CAS  PubMed  Google Scholar 

  52. Cronan JE (2003) Cosmid-based system for transient expression and absolute off-to-on transcriptional control of Escherichia coli genes. J Bacteriol 185:6522–6529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kovach ME, Phillips RW, Elzer PH, Roop RM 2nd, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802

    CAS  PubMed  Google Scholar 

  54. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  55. Labes M, Pühler A, Simon R (1990) A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for gram-negative bacteria. Gene 89:37–46

    Article  CAS  PubMed  Google Scholar 

  56. Arvani S, Markert A, Loeschcke A, Jaeger KE, Drepper T (2012) A T7 RNA polymerase-based toolkit for the concerted expression of clustered genes. J Biotechnol 159:162–171

    Article  CAS  PubMed  Google Scholar 

  57. Fischbach M, Voigt CA (2010) Prokaryotic gene clusters: a rich toolbox for synthetic biology. Biotechnol J 5:1277–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rocha-Martin J, Harrington C, Dobson AD, O’Gara F (2014) Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 12:3516–3559

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ferrer M, Martinez-Martinez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microbial Biotechnol 9:22–34

    Article  CAS  Google Scholar 

  60. McAllister WT, Morris C, Rosenberg AH, Studier FW (1981) Utilization of bacteriophage T7 late promoters in recombinant plasmids during infection. J Mol Biol 153:527–544

    Article  CAS  PubMed  Google Scholar 

  61. Widenhorn KA, Somers JM, Kay WW (1988) Expression of the divergent tricarboxylate transport operon (tctI) of Salmonella typhimurium. J Bacteriol 170:3223–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kang Y, Son MS, Hoang TT (2007) One step engineering of T7-expression strains for protein production: increasing the host-range of the T7-expression system. Protein Expr Purif 55:325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ferrieres L, Hemery G, Nham T, Guerout AM, Mazel D, Beloin C, Ghigo JM (2010) Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J Bacteriol 192:6418–6427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Troeschel SC, Drepper T, Leggewie C, Streit WR, Jaeger KE (2010) Novel tools for the functional expression of metagenomic DNA. Methods Mol Biol 668:117–139

    Article  CAS  PubMed  Google Scholar 

  65. Kuan CT, Tessman I (1992) Further evidence that transposition of Tn5 in Escherichia coli is strongly enhanced by constitutively activated RecA proteins. J Bacteriol 174:6872–6877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this work was funded by the Bioeconomy Science Center which is financially supported by the Ministry of Innovation, Research and Science of North-Rhine Westphalia, Germany, within the framework of the NRW Strategieprojekt BioSC (No. 313/323 - 400 - 00213), and by the Deutsche Forschungsgemeinschaft within CEPLAS—Cluster of Excellence on Plant Sciences (EXC 1028).

We thank Alexander Bollinger (Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany) for his contribution regarding handling of B. glumae PG1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Erich Jaeger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Katzke, N., Knapp, A., Loeschcke, A., Drepper, T., Jaeger, KE. (2017). Novel Tools for the Functional Expression of Metagenomic DNA. In: Streit, W., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 1539. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6691-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6691-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6689-9

  • Online ISBN: 978-1-4939-6691-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics