Skip to main content

Cardiac Action Potential Measurement in Human Embryonic Stem Cell Cardiomyocytes for Cardiac Safety Studies Using Manual Patch-Clamp Electrophysiology

  • Protocol
  • First Online:
Stem Cell-Derived Models in Toxicology

Abstract

Human stem cell-derived cardiomyocytes present numerous advantages over isolated primary cardiac cells or tissues to study action potential (AP) prolongation by drug candidates for cardiac safety studies. Human stem cell-derived cardiomyocytes (hSC-CMs) express ionic channels that underlie cardiac action potentials and exhibit typical electrophysiological and mechanical characteristics of native human cardiomyocytes. Here, we demonstrate that the hSC-CMs are optimal for assessing dl-sotalol- and quinidine-induced action potential repolarization delay and nifedipine-induced shortening of action potential repolarization, and thus hSC-CMs exhibit the required electrophysiological and pharmacological profile at the cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cranfield PF (1977) Action potentials, afterpotentials, and arrhythmias. Circ Res 41:415–423

    Article  Google Scholar 

  2. Rosen MR, Moak JP, Damiano B (1984) The clinical relevance of afterdepolarizations. Ann N Y Acad Sci 427:84–93

    Article  CAS  PubMed  Google Scholar 

  3. Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z (2010) Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm 7:1891–1899

    Article  PubMed  PubMed Central  Google Scholar 

  4. Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569–580

    Article  CAS  PubMed  Google Scholar 

  5. Liu GX, Choi BR, Ziv O, Li W, de Lange E, Qu Z et al (2012) Differential conditions for early after-depolarizations and triggered activity in cardiomyocytes derived from transgenic LQT1 and LQT2 rabbits. J Physiol 590:1171–1180

    Article  PubMed  Google Scholar 

  6. Antzelevitch C, Sicouri S (1994) Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Role of M cells in the generation of U waves, triggered activity and torsade de pointes. J Am Coll Cardiol 23:259–277

    Article  CAS  PubMed  Google Scholar 

  7. Viswanathan PC, Rudy Y (1999) Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc Res 42:530–542

    Article  CAS  PubMed  Google Scholar 

  8. Carlsson L, Abrahamsson C, Andersson B, Duker G, Schiller-Lindhardt G (1993) Proarrhythmic effects of class III agent almokalant: importance of infusion rate. QT dispersion and early after depolarizations. Cardiovasc Res 27:2186–2193

    Article  CAS  PubMed  Google Scholar 

  9. Burashnikov A, Antzelevitch C (1998) Acceleration-induced action potential prolongation and early afterdepolarizations. J Cardiovasc Electrophysiol 9:934–948

    Article  CAS  PubMed  Google Scholar 

  10. El-Sherif N, Caref FB, Yin H, Restivo M (1996) The electrophysiological mechanism of ventricular arrhythmias in the long QT syndrome tri-dimensional mapping of activation and recovery patterns. Circ Res 79:474–492

    Article  CAS  PubMed  Google Scholar 

  11. Surawicz B (1989) Electrophysiological substrate for Torsade de pointes: dispersion of refractoriness or early afterdepolarizations. J Am Coll Cardiol 14:172–184

    Article  CAS  PubMed  Google Scholar 

  12. Verduyn SC, Vos MA, Van der Zande J, Van der Hulst FF, Wellens HJJ (1997) Role of interventricular dispersion of repolarization in acquired torsade-de-pointes arrhythmias: reversal by magnesium. Cardiovasc Res 34:453–463

    Article  CAS  PubMed  Google Scholar 

  13. Antzelevitch C, Shimizu W, Yan GX et al (1999) The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J Cardiovasc Electrophysiol 10:1124–1152

    Article  CAS  PubMed  Google Scholar 

  14. Brown AM, Rampe D (2000) Drug-induced long QT syndrome: is HERG the root of all evil? Pharm News 7:15–20

    CAS  Google Scholar 

  15. ICH Harmonized Tripartite Guideline (2005) The non-clinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals S7B. Recommended for adoption at step 4 of the ICH process on 12 May 2005 by the ICH Steering Committee. ICH; (http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S7B/Step4/S7B_Guideline.pdf)

  16. ICH Harmonized Tripartite Guideline (2005) The clinical evaluation of QT/QTc Interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs E14. Recommended for adoption at step 4 of the ICH process on 12 May 2005 by the ICH Steering Committee. ICH; (http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/E14_Guideline.pdf)

  17. Darpo B (2010) The thorough QT study four years after the implementation of the ICH E14 guidance. Br J Pharmacol 159:49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E14 Implementation Working Group ICH E14 Guideline (2012) The clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs questions & answers (R1) (http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/ E14_Q_As_R1_step4.pdf)

  19. Sugiyama A, Hashimoto H, Nakamura Y, Fujita T, Kumagai Y (2014) QT/QTc study conducted in Japanese adult healthy subjects: a novel xanthine oxidase inhibitor topiroxostat was not associated with QT prolongation. J Clin Pharmacol 54(4):446–452

    Article  PubMed  Google Scholar 

  20. Giorgi MA, Bolaños R, Gonzalez CD, Di Girolamo G (2010) QT interval prolongation: preclinical and clinical testing arrhythmogenesis in drugs and regulatory implications. Curr Drug Saf 5:54–57

    Article  PubMed  Google Scholar 

  21. Rechanneling the cardiac proarrhythmia safety paradigm (2014) A meeting report from the Cardiac Safety Research Consortium. Am Heart J 167:292–300

    Google Scholar 

  22. Clements M, Thomas N (2014) High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol Sci 140(2):445–461

    Article  CAS  PubMed  Google Scholar 

  23. Pen S, Lacerda AE, Kirsch GE, Brown AM, Bruening-Wright A (2010) The action potential and comparative pharmacology of stem cell- derived human cardiomyocytes. J Pharmacol Toxicol Methods 61(3):277–286

    Article  Google Scholar 

  24. Ma J et al (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potential and ionic currents. Am J Physiol Heart Circ Physiol 301:H2006–H2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanguinetti MC, Changan J, Curran MC, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the Ikr potassium channel. Cell 81(2):299–307

    Article  CAS  PubMed  Google Scholar 

  26. Sanguinetti MC, Tristani- Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Google Scholar 

Download references

Acknowledgments

We thank Shimin Wang for collecting the action potential data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukrishnan Renganathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Renganathan, M., Wei, H., Zhao, Y. (2017). Cardiac Action Potential Measurement in Human Embryonic Stem Cell Cardiomyocytes for Cardiac Safety Studies Using Manual Patch-Clamp Electrophysiology. In: Clements, M., Roquemore, L. (eds) Stem Cell-Derived Models in Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6661-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6661-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6659-2

  • Online ISBN: 978-1-4939-6661-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics