Skip to main content

Stem Cell-Derived Models for Safety and Toxicity Assessments: Present and Future Studies in the “Proclinical Space”

  • Protocol
  • First Online:
Stem Cell-Derived Models in Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The promise of human, stem cell-derived models for safety and toxicity assessments remains great. Using such preparations it should be possible to provide preclinical assessments of drug effects with human-derived cells and engineered tissues, creating a new “proclinical” paradigm to study human responses without administering drugs to human volunteers or patients. Along with this promise come challenges related to more fully characterizing, standardizing, and understanding these novel preparations, developing the experimental platforms necessary for efficient and reproducible studies, and validation studies demonstrating overall utility of various models. This chapter describes some issues encountered with the development of human-induced stem cell-derived cardiomyocytes for safety and toxicity studies with evolving drug candidates, along with a discussion of the role of future proclinical studies as part of an integrated package of more traditional safety and toxicology assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. Erratum in: Science 1998 Dec 4;282(5395):1827

    Google Scholar 

  2. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  3. Shinnawi R, Gepstein L (2014) iPCS cell modeling of inherited cardiac arrhythmias. Curr Treat Options Cardiovasc Med 16(9):331. doi:10.1007/s11936-014-0331-4

    Article  PubMed  Google Scholar 

  4. Mak TW (2007) Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell 131:1027–1031

    Article  CAS  PubMed  Google Scholar 

  5. Rosenblueth A, Wiener N, Rosenblueth A, Wiener N (1945) The role of models in science. Philos Sci 12:316–321

    Article  Google Scholar 

  6. Avior Y, Sagi I, Benvenisty N (2016) Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17(3):170–182. doi:10.1038/nrm.2015.27

    Article  CAS  PubMed  Google Scholar 

  7. Davis RP, van den Berg CW, Casini S, Braam SR, Mummery CL (2011) Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends Mol Med 17(9):475–484. doi:10.1016/j.molmed.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  8. Pouton C, Haynes J (2007) Embryonic stem cells as a source of models for drug discovery. Nat Rev Drug Discov 6:605–616

    Article  CAS  PubMed  Google Scholar 

  9. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, Kolaja KL, Swanson BJ, January CT (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301(5):H2006–H2017. doi:10.1152/ajpheart.00694.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uesugi M, Ojima A, Taniguchi T, Miyamoto N, Sawada K (2014) Low-density plating is sufficient to induce cardiac hypertrophy and electrical remodeling in highly purified human iPS cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 69(2):177–188. doi:10.1016/j.vascn.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  11. Beauchamp P, Moritz W, Kelm JM, Ullrich ND, Agarkova I, Anson BD, Suter TM, Zuppinger C (2015) Development and characterization of a scaffold-free 3D spheroid model of induced pluripotent stem cell-derived human cardiomyocytes. Tissue Eng Part C Methods 21(8):852–861. doi:10.1089/ten.TEC.2014.0376

    Article  CAS  PubMed  Google Scholar 

  12. Boudreau-Béland J, Duverger JE, Petitjean E, Maguy A, Ledoux J, Comtois P (2015) Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate. PLoS One 10(6), e0127977. doi:10.1371/journal.pone.0127977

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pasqualini FS, Sheehy SP, Agarwal A, Aratyn-Schaus Y, Parker KK (2015) Structural phenotyping of stem cell-derived cardiomyocytes. Stem Cell Rep 4(3):340–347. doi:10.1016/j.stemcr.2015.01.020, Epub 2015 Feb 26

    Article  CAS  Google Scholar 

  14. Nirmalanandhan VS, Sittampalam GS (2009) Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges. J Biomol Screen 14:755–768

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Laksman Z, Backx PH (2016) The electrophysiological development of cardiomyocytes. Adv Drug Deliv Rev 96:253–273

    Article  CAS  PubMed  Google Scholar 

  16. Turnbull IC, Karakikes I, Serrao GW, Backeris P, Lee JJ, Xie C, Senyei G, Gordon RE, Li RA, Akar FG, Hajjar RJ, Hulot JS, Costa KD (2014) Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J 28(2):644–654. doi:10.1096/fj.13-228007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van den Berg CW, Okawa S, Chuva de Sousa Lopes SM, van Iperen L, Passier R, Braam SR, Tertoolen LG, del Sol A, Davis RP, Mummery CL (2015) Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 142(18):3231–3238. doi:10.1242/dev.123810

  18. van den Heuvel NH, van Veen TA, Lim B, Jonsson MK (2014) Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes. J Mol Cell Cardiol 67:12–25. doi:10.1016/j.yjmcc.2013.12.011

    Article  PubMed  Google Scholar 

  19. Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M (2015) Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem? Stem Cells Dev 24(9):1035–1052. doi:10.1089/scd.2014.0533

    Article  CAS  PubMed  Google Scholar 

  20. Ribeiro MC, Tertoolen LG, Guadix JA, Bellin M, Kosmidis G, D’Aniello C, Monshouwer-Kloots J, Goumans MJ, Wang YL, Feinberg AW, Mummery CL, Passier R (2015) Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro—correlation between contraction force and electrophysiology. Biomaterials 51:138–150. doi:10.1016/j.biomaterials.2015.01.067, Epub 2015 Feb 18

    Article  CAS  PubMed  Google Scholar 

  21. Kamakura T, Makiyama T, Sasaki K, Yoshida Y, Wuriyanghai Y, Chen J, Hattori T, Ohno S, Kita T et al (2013) Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J 77:1307–1314

    Article  CAS  PubMed  Google Scholar 

  22. Volz A, Piper HM, Siegmund B, Schwartz P (1991) Longevity of adult ventricular rat heart muscle cells in serum-free primary culture. J Mol Cell Cardiol 23(2):161–173

    Article  CAS  PubMed  Google Scholar 

  23. Zhuge Y, Patlolla B, Ramakrishnan C, Beygui RE, Zarins CK, Deisseroth K, Kuhl E, Abilez OJ (2014) Human pluripotent stem cell tools for cardiac optogenetics. Conf Proc IEEE Eng Med Biol Soc 2014:6171–6174. doi:10.1109/EMBC.2014.6945038

    PubMed  Google Scholar 

  24. Hortigon-Vinagre MP, Zamora V, Burton FL, Craig MA, Green J, Gintant GA, Smith GL. The use of ratiometric fluorescence measurements of the voltage sensitive dye di-4-ANEPPS to examine action potential characteristics and drug effects on human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2016: [Epub ahead of print]. doi:10.1093/toxsci/kfw171

  25. O’Hara T, Virág L, Varró A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7(5), e1002061. doi:10.1371/journal.pcbi.1002061

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mannhardt I, Breckwoldt K, Letuffe-Brenière D, Schaaf S, Schulz H, Neuber C, Benzin A, Werner T, Eder A, Schulze T, Klampe B, Christ T, Hirt MN, Huebner N, Moretti A, Eschenhagen T, Hansen A (2016) Human engineered heart tissue: analysis of contractile force. Stem Cell Rep pii:S2213-6711(16)30036-4. doi:10.1016/j.stemcr.2016.04.011

  27. Asakura K, Hayashi S, Ojima A, Taniguchi T, Miyamoto N, Nakamori C, Nagasawa C, Kitamura T, Osada T, Honda Y, Kasai C, Ando H, Kanda Y, Sekino Y, Sawada K (2015) Improvement of acquisition and analysis methods in multi-electrode array experiments with iPS cell-derived cardiomyocytes. J Pharmacol Toxicol Methods 75:17–26. doi:10.1016/j.vascn.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  28. Braam SR, Tertoolen L, Casini S, Matsa E, Lu HR, Teisman A, Passier R, Denning C, Gallacher DJ, Towart R, Mummery CL (2013) Repolarization reserve determines drug responses in human pluripotent stem cell derived cardiomyocytes. Stem Cell Res 10(1):48–56. doi:10.1016/j.scr.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  29. Qu Y, Gao B, Fang M, Vargas HM (2013) Human embryonic stem cell derived cardiac myocytes detect hERG-mediated repolarization effects, but not Nav1.5 induced depolarization delay. J Pharmacol Toxicol Methods 68(1):74–81. doi:10.1016/j.vascn.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  30. Satin J, Kehat I, Caspi O, Huber I, Arbel G, Itzhaki I, Magyar J, Schroder EA, Perlman I, Gepstein L (2004) Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J Physiol 559(Pt 2):479–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vaidyanathan R, Markandeya YS, Kamp TJ, Makielski JC, January CT, Eckhardt LL (2016) IK1-enhanced human-induced pluripotent stem cell-derived cardiomyocytes: an improved cardiomyocyte model to investigate inherited arrhythmia syndromes. Am J Physiol Heart Circ Physiol 310(11):H1611–H1621. doi:10.1152/ajpheart.00481.2015

    Article  PubMed  Google Scholar 

  32. Bellin M, Marchetto MC, Gage FH, Mummery CL (2012) Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 13(11):713–726. doi:10.1038/nrm3448

    Article  PubMed  Google Scholar 

  33. Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE (2015) Engineered in vitro disease models. Annu Rev Pathol 10:195–262. doi:10.1146/annurev-pathol-012414-040418

    Article  CAS  PubMed  Google Scholar 

  34. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577

    CAS  PubMed  Google Scholar 

  35. Perera RK, Nikolaev VO (2013) Compartmentation of cAMP signalling in cardiomyocytes in health and disease. Acta Physiol (Oxf) 207(4):650–662. doi:10.1111/apha.12077

    Article  CAS  Google Scholar 

  36. Fermini B, Hancox JC, Abi-Gerges N, Bridgland-Taylor M, Chaudhary KW, Colatsky T, Correll K, Crumb W, Damiano B, Erdemli G, Gintant G, Imredy J, Koerner J, Kramer J, Levesque P, Li Z, Lindqvist A, Obejero-Paz CA, Rampe D, Sawada K, Strauss DG, Vandenberg JI (2016) A new perspective in the field of cardiac safety testing through the comprehensive in vitro proarrhythmia assay paradigm. J Biomol Screen 21(1):1–11

    Article  CAS  PubMed  Google Scholar 

  37. Gintant G, Sager PT, Stockbridge N (2016) Evolution of strategies to improve preclinical cardiac safety testing. Nat Rev Drug Discov. doi:10.1038/nrd.2015.34

    PubMed  Google Scholar 

  38. Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N (2014) Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J 167(3):292–300. doi:10.1016/j.ahj.2013.11.004

    Article  PubMed  Google Scholar 

  39. Harris K, Aylott M, Cui Y, Louttit JB, McMahon NC, Sridhar A (2013) Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays. Toxicol Sci 134(2):412–426. doi:10.1093/toxsci/kft113

    Article  CAS  PubMed  Google Scholar 

  40. Rajamohan D, Matsa E, Kalra S, Crutchley J, Patel A, George V, Denning C (2013) Current status of drug screening and disease modelling in human pluripotent stem cells. Bioessays 35(3):281–298. doi:10.1002/bies.201200053

    Article  CAS  PubMed  Google Scholar 

  41. Rajamohan D, Kalra S, Duc Hoang M, George V, Staniforth A, Russell H, Yang X, Denning C (2016) Automated electrophysiological and pharmacological evaluation of human pluripotent stem cell-derived cardiomyocytes. Stem Cells Dev 25(6):439–452. doi:10.1089/scd.2015.0253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Honda M, Kiyokawa J, Tabo M, Inoue T (2011) Electrophysiological characterization of cardiomyocytes derived from human induced pluripotent stem cells. J Pharmacol Sci 117(3):149–159

    Article  CAS  PubMed  Google Scholar 

  43. Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SS, Sandoe J, Perez NP, Williams LA, Lee S, Boulting G, Berry JD, Brown RH Jr, Cudkowicz ME, Bean BP, Eggan K, Woolf CJ (2014) Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep 7(1):1–11. doi:10.1016/j.celrep.2014.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gottschalk LB, Vecchio-Pagan B, Sharma N, Han ST, Franca A, Wohler ES, Batista DA, Goff LA, Cutting GR (2016) Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants. J Cyst Fibros 15(3):285–294. doi:10.1016/j.jcf.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  45. Hild M, Jaffe AB (2016) Production of 3-D airway organoids from primary human airway basal cells and their use in high-throughput screening. Curr Protoc Stem Cell Biol 37:IE.9.1–IE.9.15. doi:10.1002/cpsc.1

  46. Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, Bronsveld I, van de Graaf EA, Nieuwenhuis EE, Houwen RH, Vleggaar FP, Escher JC, de Rijke YB, Majoor CJ, Heijerman HG, de Winter-de Groot KM, Clevers H, van der Ent CK, Beekman JM (2016) Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med 8(344):344ra84. doi:10.1126/scitranslmed.aad8278

  47. Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, Holmström A, Chang AC, Coronado MJ, Ebert AD, Knowles JW, Telli ML, Witteles RM, Blau HM, Bernstein D, Altman RB, Wu JC (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22(5):547–556. doi:10.1038/nm.4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karakikes I, Ameen M, Termglinchan V, Wu JC (2015) Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 117(1):80–88. doi:10.1161/CIRCRESAHA.117.305365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feric NT, Radisic M (2016) Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 96:110–134. doi:10.1016/j.addr.2015.04.019

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Gintant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gintant, G., Braam, S. (2017). Stem Cell-Derived Models for Safety and Toxicity Assessments: Present and Future Studies in the “Proclinical Space”. In: Clements, M., Roquemore, L. (eds) Stem Cell-Derived Models in Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6661-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6661-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6659-2

  • Online ISBN: 978-1-4939-6661-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics