Skip to main content

Affinity Purification–Mass Spectroscopy Methods for Identifying Epstein–Barr Virus–Host Interactions

  • Protocol
  • First Online:
Epstein Barr Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1532))

Abstract

Considerable insight into the function and mechanism of action of viral proteins has come from identifying the cellular proteins with which they interact. In recent years, mass spectrometry-based methods have emerged as the method of choice for protein interaction discovery due to their comprehensive and unbiased nature. Methods involving single affinity purifications of epitope-tagged viral proteins (AP–MS) and tandem affinity purifications of viral proteins with two purification tags (TAP tagging) have both been used to identify novel host interactions with EBV proteins. However, to date these methods have only been applied to a small number of EBV proteins. Here we provide detailed methods of AP–MS and TAP tagging approaches that can be applied to any EBV protein in order to discover its host interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Georges AA, Frappier L (2015) Proteomics methods for discovering viral-host interactions. Methods 90:21–27

    Article  CAS  PubMed  Google Scholar 

  2. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032

    Article  CAS  PubMed  Google Scholar 

  3. Zeghouf M, Li J, Butland G, Borkowska A, Canadien V, Richards D, Beattie B, Emili A, Greenblatt JF (2004) Sequential Peptide Affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 3:463–468

    Article  CAS  PubMed  Google Scholar 

  4. Burckstummer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, Bauch A (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013–1019

    Article  PubMed  Google Scholar 

  5. Gloeckner CJ, Boldt K, Schumacher A, Roepman R, Ueffing M (2007) A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics 7:4228–4234

    Article  CAS  PubMed  Google Scholar 

  6. Holowaty MN, Zeghouf M, Wu H, Tellam J, Athanasopoulos V, Greenblatt J, Frappier L (2003) Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 278:29987–29994

    Article  CAS  PubMed  Google Scholar 

  7. Cochrane A, Murley LL, Gao M, Wong R, Clayton K, Brufatto N, Canadien V, Mamelak D, Chen T, Richards D, Zeghouf M, Greenblatt J, Burks C, Frappier L (2009) Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function. Virology 388:103–111

    Article  CAS  PubMed  Google Scholar 

  8. Sakwe AM, Nguyen T, Athanasopoulos V, Shire K, Frappier L (2007) Identification and characterization of a novel component of the human minichromosome maintenance complex. Mol Cell Biol 27:3044–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, Zhang RG, Liao J, Lee W, Edwards AM, Arrowsmith CH, Frappier L (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18:25–36

    Article  CAS  PubMed  Google Scholar 

  10. Sivachandran N, Sarkari F, Frappier L (2008) Epstein-Barr nuclear antigen 1 contributes to nasopharyngeal carcinoma through disruption of PML nuclear bodies. PLoS Pathog 4:e1000170

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sivachandran N, Cao JY, Frappier L (2010) Epstein-Barr virus nuclear antigen 1 Hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 84:11113–11123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forsman A, Ruetschi U, Ekholm J, Rymo L (2008) Identification of intracellular proteins associated with the EBV-encoded nuclear antigen 5 using an efficient TAP procedure and FT-ICR mass spectrometry. J Proteome Res 7:2309–2319

    Article  CAS  PubMed  Google Scholar 

  13. Bailey SG, Verrall E, Schelcher C, Rhie A, Doherty AJ, Sinclair AJ (2009) Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1. J Virol 83:11116–11122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohashi M, Holthaus AM, Calderwood MA, Lai CY, Krastins B, Sarracino D, Johannsen E (2015) The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog 11:e1004822

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen GI, Gingras AC (2007) Affinity-purification mass spectrometry (AP-MS) of serine/threonine phosphatases. Methods 42:298–305

    Article  CAS  PubMed  Google Scholar 

  16. Kean MJ, Couzens AL, Gingras AC (2012) Mass spectrometry approaches to study mammalian kinase and phosphatase associated proteins. Methods 57:400–408

    Article  CAS  PubMed  Google Scholar 

  17. Owen CB, Hughes DJ, Baquero-Perez B, Berndt A, Schumann S, Jackson BR, Whitehouse A (2014) Utilising proteomic approaches to understand oncogenic human herpesviruses (Review). Mol Clin Oncol 2:891–903

    PubMed  PubMed Central  Google Scholar 

  18. Mellacheruvu D, Wright Z, Couzens AL, Lambert JP, St-Denis NA, Li T, Miteva YV, Hauri S, Sardiu ME, Low TY, Halim VA, Bagshaw RD, Hubner NC, Al-Hakim A, Bouchard A, Faubert D, Fermin D, Dunham WH, Goudreault M, Lin ZY, Badillo BG, Pawson T, Durocher D, Coulombe B, Aebersold R, Superti-Furga G, Colinge J, Heck AJ, Choi H, Gstaiger M, Mohammed S, Cristea IM, Bennett KL, Washburn MP, Raught B, Ewing RM, Gingras AC, Nesvizhskii AI (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10:730–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wiedmer A, Wang P, Zhou J, Rennekamp AJ, Tiranti V, Zeviani M, Lieberman PM (2008) Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication. J Virol 82:4647–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paladino P, Marcon E, Greenblatt J, Frappier L (2014) Identification of herpesvirus proteins that contribute to G1/S arrest. J Virol 88:4480–4492

    Article  PubMed  PubMed Central  Google Scholar 

  21. Malik-Soni N, Frappier L (2012) Proteomic profiling of EBNA1-host protein interactions in latent and lytic Epstein-Barr virus infections. J Virol 86:6999–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Malik-Soni N, Frappier L (2014) Nucleophosmin contributes to the transcriptional activation function of the Epstein-Barr virus EBNA1 protein. J Virol 88:2323–2326

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen YL, Liu CD, Cheng CP, Zhao B, Hsu HJ, Shen CL, Chiu SJ, Kieff E, Peng CW (2014) Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proc Natl Acad Sci U S A 111:243–248

    Article  CAS  PubMed  Google Scholar 

  24. Shen CL, Liu CD, You RI, Ching YH, Liang J, Ke L, Chen YL, Chen HC, Hsu HJ, Liou JW, Kieff E, Peng CW (2016) Ribosome Protein L4 is essential for Epstein-Barr Virus Nuclear Antigen 1 function. Proc Natl Acad Sci U S A 113:2229–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coulombe B, Killeen M, Liljelund P, Honda B, Xiao H, Ingles CJ, Greenblatt J (1992) Identification of three mammalian proteins that bind to the yeast TATA box protein TFIID. Gene Expr 2:99–110

    CAS  PubMed  Google Scholar 

  26. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Frappier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Georges, A.A., Frappier, L. (2017). Affinity Purification–Mass Spectroscopy Methods for Identifying Epstein–Barr Virus–Host Interactions. In: Minarovits, J., Niller, H. (eds) Epstein Barr Virus. Methods in Molecular Biology, vol 1532. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6655-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6655-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6653-0

  • Online ISBN: 978-1-4939-6655-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics