Skip to main content

Characterization of EBV Promoters and Coding Regions by Sequencing PCR-Amplified DNA Fragments

  • Protocol
  • First Online:
Epstein Barr Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1532))

  • 2795 Accesses

Abstract

DNA sequencing approaches originally developed in two directions, the chemical degradation method and the chain-termination method. The latter one became more widespread and a huge amount of sequencing data including whole genome sequences accumulated, based on the use of capillary sequencer systems and the application of a modified chain-termination method which proved to be relatively easy, fast, and reliable. In addition, relatively long, up to 1000 bp sequences could be obtained with a single read with high per-base accuracy. Although the recent appearance of next-generation DNA sequencing (NGS) technologies enabled high-throughput and low cost analysis of DNA, the modified chain-terminating methods are often applied in research until now. In the following, we shall present the application of capillary sequencing for the sequence characterization of viral genomes in case of partial and whole genome sequencing, and demonstrate it on the BARF1 promoter of Epstein Barr virus (EBV).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mueller PR, Wold B (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780–786

    Article  CAS  PubMed  Google Scholar 

  4. Garrity PA, Wold BJ (1992) Effects of different DNA polymerases in ligation-mediated PCR: Enhanced genomic sequencing and in vivo footprinting. Proc Natl Acad Sci U S A 89:1021–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Niller HH, Glaser G, Knüchel R et al (1995) Nucleoprotein complexes and DNA 5′-ends at oriP of Epstein-Barr virus. J Biol Chem 270:12864–12868

    Google Scholar 

  6. Szenthe K, Koroknai A, Banati F et al (2013) The 5′ regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells. Biochem Biophys Res Commun 433:489–495

    Article  CAS  PubMed  Google Scholar 

  7. Szenthe K, Koroknai A, Banati F et al (2013) The role of DNA hypomethylation, histone acetylation and in vivo protein-DNA binding in Epstein-Barr virus-induced CD23 upregulation. Biochem Biophys Res Commun 435:8–15

    Article  CAS  PubMed  Google Scholar 

  8. Prober JM, Trainor GL, Dam RJ et al (1987) A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science 238:336–341

    Article  CAS  PubMed  Google Scholar 

  9. Huang XC, Quesada MA, Mathies RA (1992) DNA sequencing using capillary array electrophoresis. Anal Chem 64:2149–2154

    Article  CAS  PubMed  Google Scholar 

  10. Dolnik V (1999) DNA sequencing by capillary electrophoresis (review). J Biochem Biophys Methods 41:103–119

    Article  CAS  PubMed  Google Scholar 

  11. Ausubel FM, Albright LM, Ju J (1999) DNA sequencing. Curr Protoc Mol Biol 7:1–7.0.15

    Google Scholar 

  12. Baer R, Bankier AT, Biggin MD et al (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211

    Article  CAS  PubMed  Google Scholar 

  13. Cheung A, Kieff E (1982) Long internal direct repeat in Epstein-Barr virus DNA. J Virol 44:286–294

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dambaugh TR, Kieff E (1982) Identification and nucleotide sequences of two similar tandem direct repeats in Epstein-Barr virus DNA. J Virol 44:823–833

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones MD, Foster L, Sheedy T et al (1984) The EB virus genome in Daudi Burkitt’s lymphoma cells has a deletion similar to that observed in a non-transforming strain (P3HR-1) of the virus. EMBO J 3:813–821

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hatfull G, Bankier AT, Barrell BG et al (1988) Sequence analysis of Raji Epstein-Barr virus DNA. Virology 164:334–340

    Article  CAS  PubMed  Google Scholar 

  17. de Jesus O, Smith PR, Spender LC et al (2003) Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J Gen Virol 84:1443–1450

    Article  PubMed  Google Scholar 

  18. Lin Z, Wang X, Strong MJ et al (2013) Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol 87:1172–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tso KK, Yip KY, Mak CK et al (2013) Complete genomic sequence of Epstein-Barr virus in nasopharyngeal carcinoma cell line C666-1. Infect Agent Cancer 8:29

    Article  PubMed  PubMed Central  Google Scholar 

  20. Palser AL, Grayson NE, White RE et al (2015) Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J Virol 89:5222–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoebe EK, Wille C, Hopmans ES et al (2012) Epstein-Barr virus transcription activator R upregulates BARF1 expression by direct binding to its promoter, independent of methylation. J Virol 86:11322–11332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fiorini S, Ooka T (2008) Secretion of Epstein-Barr Virus-encoded BARF1 oncoprotein from latently infected B cells. Virol J 5:70

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hoebe EK, Le Large TY, Greijer AE et al (2013) BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev Med Virol 23:367–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ernberg I, Falk K, Minarovits J et al (1989) The role of methylation in the phenotype dependent modulation of Epstein–Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein–Barr virus. J Gen Virol 70:2989–3002

    Article  CAS  PubMed  Google Scholar 

  25. Altiok E, Minarovits J, Hu LF et al (1992) Host-cell-phenotype-dependent control of the BCR2/BWR1 promoter complex regulates the expression of Epstein-Barr virus nuclear antigens 2-6. Proc Natl Acad Sci U S A 89:905–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gregory CD, Rowe M, Rickinson AB (1990) Different Epstein–Barr virus–B cell interactions in phenotypically distinct clones of a Burkitt’s lymphoma cell line. J Gen Virol 71:1481–1495

    Article  CAS  PubMed  Google Scholar 

  27. Epstein MA, Achong BG, Barr YM et al (1966) Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J Natl Cancer Inst 37:547–559

    CAS  PubMed  Google Scholar 

  28. Cailleau R, Young R, Olive M et al (1974) Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 53:661–674

    CAS  PubMed  Google Scholar 

  29. Wakisaka N, Kondo S, Yoshizaki T et al (2004) Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha. Mol Cell Biol 24:5223–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheung ST, Huang DP, Hui AB et al (1999) Nasopharyngeal carcinoma cell line (C666-1) consistently harboring Epstein-Barr virus. Int J Cancer 83:121–126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Szenthe, K., Bánáti, F. (2017). Characterization of EBV Promoters and Coding Regions by Sequencing PCR-Amplified DNA Fragments. In: Minarovits, J., Niller, H. (eds) Epstein Barr Virus. Methods in Molecular Biology, vol 1532. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6655-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6655-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6653-0

  • Online ISBN: 978-1-4939-6655-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics