Skip to main content

Piloting Your Nanovehicle to Overcome Biological Barriers

  • Protocol
  • First Online:
Cancer Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1530))

  • 2472 Accesses

Abstract

Designing an effective nanoparticle for selective drug transport requires careful consideration of the complex biological barriers encountered in transit to the desired target. Here, we review several of these barriers, and provide possible methods for formulating liposomal nanoparticles to overcome them. The methods include the biotinylation of an antibody, and subsequent conjugation to a PEGylated cationic lipid nanoparticle. Additionally, the incorporation of drug, and other relevant characteristics of the nanoparticle are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Senior JH (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3(2):123–193

    CAS  PubMed  Google Scholar 

  2. Drummond DC, Meyer O, Hong K et al (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–743

    CAS  PubMed  Google Scholar 

  3. Gregoriadis G (1988) Liposomes as drug carriers: recent trends and progress. Wiley, Chichester

    Google Scholar 

  4. Patel HM, Moghimi SM (1998) Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system—the concept of tissue specificity. Adv Drug Deliv Rev 32(1–2):45–60, S0169-409X(97)00131-2 [pii]

    CAS  PubMed  Google Scholar 

  5. Papahadjopoulos D, Allen TM, Gabizon A et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88(24):11460–11464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–30

    Article  CAS  PubMed  Google Scholar 

  7. Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756

    CAS  PubMed  Google Scholar 

  8. Seymour LW (1992) Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 9(2):135–187

    CAS  PubMed  Google Scholar 

  9. Huang SK, Mayhew E, Gilani S et al (1992) Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Res 52(24):6774–6781

    CAS  PubMed  Google Scholar 

  10. Jain RK (1989) Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 81(8):570–576

    Article  CAS  PubMed  Google Scholar 

  11. Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50(3 Suppl):814–819

    Google Scholar 

  12. Lipinski CA, Lombardo F, Dominy BW et al (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17

    Article  Google Scholar 

  13. Laouini A, Jaafar-Maalej C, Limayem-Blouza I et al (2012) Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol 1(2):147–168

    Article  CAS  Google Scholar 

  14. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuesters GM, Campbell RB (2010) Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine 5(2):181–192

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez PL, Harada T, Christian DA et al (2013) Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122):971–975. doi:10.1126/science.1229568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caffrey M (1993) LIPIDAT a database of thermo data and association information on lipid. CRC Press, Boca Raton

    Google Scholar 

  18. Barnadas-Rodriguez R, Sabés M (2001) Factors involved in the production of liposomes with a high-pressure homogenizer. Int J Pharm 213(1):175–186

    Article  CAS  PubMed  Google Scholar 

  19. de Paula Rigoletto T, Silva CL, Santana MHA et al (2012) Effects of extrusion, lipid concentration and purity on physico-chemical and biological properties of cationic liposomes for gene vaccine applications. J Microencapsul 29(8):759–769

    Article  PubMed  Google Scholar 

  20. Pupo E, Padrón A, Santana E et al (2005) Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique. J Control Release 104(2):379–396

    Article  CAS  PubMed  Google Scholar 

  21. Wagner A, Vorauer-Uhl K (2011) Liposome technology for industrial purposes. J Drug Deliv 2011:591325. doi:10.1155/2011/591325

    Article  PubMed  Google Scholar 

  22. Mayer LD, Tai LC, Bally MB et al (1990) Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta Biomembranes 1025(2):143–151

    Article  CAS  Google Scholar 

  23. van Etten EW, ten Kate MT, Stearne LE et al (1995) Amphotericin B liposomes with prolonged circulation in blood: in vitro antifungal activity, toxicity, and efficacy in systemic candidiasis in leukopenic mice. Antimicrob Agents Chemother 39(9):1954–1958

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kan P, Tsao CW, Wang AJ et al (2011) A liposomal formulation able to incorporate a high content of Paclitaxel and exert promising anticancer effect. J Drug Deliv 2011:629234. doi:10.1155/2011/629234

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Richards, S.M., Campbell, R.B. (2017). Piloting Your Nanovehicle to Overcome Biological Barriers. In: Zeineldin, R. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 1530. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6646-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6646-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6644-8

  • Online ISBN: 978-1-4939-6646-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics