Skip to main content

Grafting with Arabidopsis thaliana

  • Protocol
  • First Online:
Plant Hormones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1497))

Abstract

Generating chimeric organisms is an invaluable way to study cell-to-cell movement and non-cell-autonomous actions of molecules. Plant grafting is an ancient method of generating chimeric organisms and recently has been used to study the movement of hormones, proteins, and RNAs. Here, I describe a simple and efficient way to graft Arabidopsis thaliana at the seedling stage to generate plants with roots and shoots of different genotypes. Using this protocol, success rates of over 80 % with up to 80 grafts assembled per hour can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Melnyk CW, Meyerowitz EM (2015) Plant grafting. Curr Biol 25:R183–R188

    Article  CAS  PubMed  Google Scholar 

  2. Turnbull CG, Booker JP, Leyser HM (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32:255–262

    Article  CAS  PubMed  Google Scholar 

  3. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  4. Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875

    Article  CAS  PubMed  Google Scholar 

  5. Rhee SY, Somerville CR (1995) Flat-surface grafting in Arabidopsis thaliana. Plant Mol Biol Rep 13:118–123

    Article  Google Scholar 

  6. Yoo SJ, Hong SM, Jung HS, Ahn JH (2013) The cotyledons produce sufficient FT protein to induce flowering: evidence from cotyledon micrografting in Arabidopsis. Plant Cell Physiol 54:119–128

    Article  CAS  PubMed  Google Scholar 

  7. Nisar N, Verma S, Pogson BJ, Cazzonelli CI (2012) Inflorescence stem grafting made easy in Arabidopsis. Plant Methods 8:50

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang NC, Yu TS (2015) A pin-fasten grafting method provides a non-sterile and highly efficient method for grafting Arabidopsis at diverse developmental stages. Plant Methods 11:38

    Article  PubMed  PubMed Central  Google Scholar 

  9. Melnyk CW, Schuster C, Leyser O, Meyerowitz EM (2015) A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr Biol 25:1306–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ (2007) Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci U S A 104:14741–14746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136:2523–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Widiez T, El Kafafi S, Girin T, Berr A, Ruffel S, Krouk G, Vayssieres A, Shen WH, Coruzzi GM, Gojon A et al (2011) High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3− uptake is associated with changes in histone methylation. Proc Natl Acad Sci U S A 108:13329–13334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andersen TG, Nour-Eldin HH, Fuller VL, Olsen CE, Burow M, Halkier BA (2013) Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 25:3133–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gasperini D, Chauvin A, Acosta IF, Kurenda A, Stolz S, Chetelat A, Wolfender JL, Farmer EE (2015) Axial and radial oxylipin transport. Plant Physiol 169:2244–2254

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci U S A 105:20027–20031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Norman JM, Frederick RL, Sieburth LE (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr Biol 14:1739–1746

    Article  CAS  PubMed  Google Scholar 

  19. Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yin H, Yan B, Sun J, Jia P, Zhang Z, Yan X, Chai J, Ren Z, Zheng G, Liu H (2012) Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J Exp Bot 63:4219–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

I thank Elliot Meyerowitz and Raymond Wightman for critical reading. This work was funded by a Clare College Junior Research Fellowship and through Gatsby Charitable Trust grants GAT3272/C and GAT3273-PR1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Melnyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Melnyk, C.W. (2017). Grafting with Arabidopsis thaliana . In: Kleine-Vehn, J., Sauer, M. (eds) Plant Hormones. Methods in Molecular Biology, vol 1497. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6469-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6469-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6467-3

  • Online ISBN: 978-1-4939-6469-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics