Skip to main content

Genetic Manipulation of Gyrencephalic Carnivores Using In Utero Electroporation

  • Protocol
  • First Online:
Electroporation Methods in Neuroscience

Part of the book series: Neuromethods ((NM,volume 102))

Abstract

Higher mammals including primates and carnivores have developed unique brain structures, which are believed to be associated with higher brain functions. However, our molecular understanding of the formation, function and diseases related to these structures is still limited, mainly because genetic manipulations that can be applied to higher mammals had been poorly available. Here we describe a rapid and efficient method that enables in vivo genetic manipulations in the brain of gyrencephalic carnivores using in utero electroporation. Using our method, expression of transgenes becomes detectable within a few days after electroporation and persists for at least 2 months after birth. Our method is useful for expressing transgenes in neural progenitors, superficial and deep cortical post-mitotic neurons, and for examining the morphologies and axonal trajectories of GFP-expressing individual progenitors and neurons in ferrets. Furthermore, multiple genes can be efficiently co-expressed in the same progenitors and neurons. Our method promises to be a powerful tool for investigating the mechanisms underlying the development, function, and pathophysiology of neuronal structures that are unique to higher mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kawasaki H, Crowley JC, Livesey FJ, Katz LC (2004) Molecular organization of the ferret visual thalamus. J Neurosci 24:9962–9970

    Article  CAS  PubMed  Google Scholar 

  2. Iwai L, Kawasaki H (2009) Molecular development of the lateral geniculate nucleus in the absence of retinal waves during the time of retinal axon eye-specific segregation. Neuroscience 159:1326–1337

    Article  CAS  PubMed  Google Scholar 

  3. Yamamori T (2011) Selective gene expression in regions of primate neocortex: implications for cortical specialization. Prog Neurobiol 94:201–222

    Article  CAS  PubMed  Google Scholar 

  4. Bernard A, Lubbers LS, Tanis KQ, Luo R, Podtelezhnikov AA, Finney EM, McWhorter MME, Serikawa K, Lemon T, Morgan R, Copeland C, Smith K, Cullen V, Davis-Turak J, Lee C-K, Sunkin SM, Loboda AP, Levine DM, Stone DJ, Hawrylycz MJ, Roberts CJ, Jones AR, Geschwind DH, Lein ES (2012) Transcriptional architecture of the primate neocortex. Neuron 73:1083–1099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, Geschwind DH, Mane SM, State MW, Sestan N (2009) Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62:494–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Murray KD, Rubin CM, Jones EG, Chalupa LM (2008) Molecular correlates of laminar differences in the macaque dorsal lateral geniculate nucleus. J Neurosci 28:12010–12022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Iwai L, Ohashi Y, van der List D, Usrey WM, Miyashita Y, Kawasaki H (2013) FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets. Cereb Cortex 23:2204–2212

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mashiko H, Yoshida AC, Kikuchi SS, Niimi K, Takahashi E, Aruga J, Okano H, Shimogori T (2012) Comparative anatomy of marmoset and mouse cortex from genomic expression. J Neurosci 32:5039–5053

    Article  CAS  PubMed  Google Scholar 

  9. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  CAS  PubMed  Google Scholar 

  10. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  CAS  PubMed  Google Scholar 

  11. Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074

    Article  CAS  PubMed  Google Scholar 

  12. Sehara K, Toda T, Iwai L, Wakimoto M, Tanno K, Matsubayashi Y, Kawasaki H (2010) Whisker-related axonal patterns and plasticity of layer 2/3 neurons in the mouse barrel cortex. J Neurosci 30:3082–3092

    Article  CAS  PubMed  Google Scholar 

  13. Ako R, Wakimoto M, Ebisu H, Tanno K, Hira R, Kasai H, Matsuzaki M, Kawasaki H (2011) Simultaneous visualization of multiple neuronal properties with single-cell resolution in the living rodent brain. Mol Cell Neurosci 48:246–257

    Article  CAS  PubMed  Google Scholar 

  14. Petros TJ, Rebsam A, Mason CA (2009) In utero and ex vivo electroporation for gene expression in mouse retinal ganglion cells. J Vis Exp 31:e1333

    Google Scholar 

  15. Kawasaki H, Iwai L, Tanno K (2012) Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation. Mol Brain 5:24

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kawasaki H, Toda T, Tanno K (2013) In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation. Biol Open 2:95–100

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hayakawa I, Kawasaki H (2010) Rearrangement of retinogeniculate projection patterns after eye-specific segregation in mice. PLoS One 5:e11001

    Article  PubMed Central  PubMed  Google Scholar 

  18. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  CAS  PubMed  Google Scholar 

  19. Sehara K, Wakimoto M, Ako R, Kawasaki H (2012) Distinct developmental principles underlie the formation of ipsilateral and contralateral whisker-related axonal patterns of layer 2/3 neurons in the barrel cortex. Neuroscience 226:289–304

    Article  CAS  PubMed  Google Scholar 

  20. Yamasaki T, Kawasaki H, Arakawa S, Shimizu K, Shimizu S, Reiner O, Okano H, Nishina S, Azuma N, Penninger JM, Katada T, Nishina H (2011) Stress-activated protein kinase MKK7 regulates axon elongation in the developing cerebral cortex. J Neurosci 31:16872–16883

    Article  CAS  PubMed  Google Scholar 

  21. Yoshihara Y, Mizuno T, Nakahira M, Kawasaki M, Watanabe Y, Kagamiyama H, Jishage K, Ueda O, Suzuki H, Tabuchi K, Sawamoto K, Okano H, Noda T, Mori K (1999) A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22:33–41

    Article  CAS  PubMed  Google Scholar 

  22. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  23. Deisseroth K, Feng G, Majewska AK, Miesenbock G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54:205–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are especially thankful to the late Dr. Lawrence C. Katz for his advice at the initial phase of this project. We are grateful for Drs. Shoji Tsuji, Haruhiko Bito, Takashi Kadowaki, Eisuke Nishida, Yoshiki Sasai, and Shigetada Nakanishi for their continuous encouragement. This work was supported by Grant-in-Aid for Scientific Research from MEXT, PRESTO from JST. This work was also supported by Takeda Science Foundation and Takeda Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kawasaki M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kawasaki, H. (2015). Genetic Manipulation of Gyrencephalic Carnivores Using In Utero Electroporation. In: Saito, T. (eds) Electroporation Methods in Neuroscience. Neuromethods, vol 102. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2459-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2459-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2458-5

  • Online ISBN: 978-1-4939-2459-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics