Skip to main content

Electroporation in the Developing Mouse Olfactory Bulb

  • Protocol
  • First Online:
Electroporation Methods in Neuroscience

Part of the book series: Neuromethods ((NM,volume 102))

Abstract

In utero electroporation is a method to deliver DNA into the developing mouse brain. The technique is very useful to study the mechanisms of mammalian brain development, and now has been widely applied to many brain regions and species since the method was first reported by Saito and Nakatsuji in 2001. Here, we provide a protocol for applying in utero electroporation to the developing mouse olfactory bulb (OB). The target cells of this protocol in the OB are the projection neurons, especially mitral cells. By introducing different plasmids, our method allows us to follow the developmental changes of mitral cell location and morphology in the presumptive OB of the embryonic mouse brain, and to study functions of specific molecules in developing mitral cells. Mitral cells are generated during a narrow temporal window in the embryonic brain, and unfortunately, there are few effective gene-targeted or transgenic mouse lines for studying the development of OB projection neurons. The electroporation technique we describe here can overcome these disadvantages, and therefore, will facilitate the study of the molecular mechanisms regulating mitral cell development. In utero electroporation that can be used to track mitral cell migration and differentiation as well as to upregulate or downregulate the candidate developmental molecules will lead us to a deeper understanding of organization within the olfactory system and the strategies it employs for processing odor information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187

    Article  CAS  PubMed  Google Scholar 

  2. Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9(12):951–963

    Article  CAS  PubMed  Google Scholar 

  3. Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133

    CAS  PubMed  Google Scholar 

  4. Adipietro KA, Mainland JD, Matsunami H (2012) Functional evolution of mammalian odorant receptors. PLoS Genet 8(7):e1002821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mori K, Sakano H (2011) How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci 34:467–499

    Article  CAS  PubMed  Google Scholar 

  6. DeMaria S, Ngai J (2010) The cell biology of smell. J Cell Biol 191(3):443–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mombaerts P (1999) Molecular biology of odorant receptors in vertebrates. Annu Rev Neurosci 22:487–509

    Article  CAS  PubMed  Google Scholar 

  8. Shepherd GM, Chen WR, Greer CA (2004) Olfactory bulb. In: Shepherd GM (ed) The synaptic organization of the brain, 5th edn. Oxford UP, New York, pp 165–216

    Chapter  Google Scholar 

  9. Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S, Kobayakawa K, Kobayakawa R, Tanifuji M, Sakano H, Chen WR, Mori K (2012) Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J Neurosci 32(23):7970–7985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hinds JW (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J Comp Neurol 134(3):287–304

    Article  CAS  PubMed  Google Scholar 

  11. Blanchart A, De Carlos JA, López-Mascaraque L (2006) Time frame of mitral cell development in the mice olfactory bulb. J Comp Neurol 496(4):529–543

    Article  PubMed  Google Scholar 

  12. Imamura F, Ayoub AE, Rakic P, Greer CA (2011) Timing of neurogenesis is a determinant of olfactory circuitry. Nat Neurosci 14(3):331–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hinds JW (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J Comp Neurol 134(3):305–322

    Article  CAS  PubMed  Google Scholar 

  14. Imamura F, Greer CA (2013) Pax6 regulates Tbr1 and Tbr2 expressions in olfactory bulb mitral cells. Mol Cell Neurosci 54:58–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hinds JW (1972) Early neuron differentiation in the mouse olfactory bulb. II. Electron microscopy. J Comp Neurol 146(2):253–276

    Article  CAS  PubMed  Google Scholar 

  16. Hinds JW (1972) Early neuron differentiation in the mouse of olfactory bulb. I. Light microscopy. J Comp Neurol 146(2):233–252

    Article  CAS  PubMed  Google Scholar 

  17. Treloar HB, Purcell AL, Greer CA (1999) Glomerular formation in the developing rat olfactory bulb. J Comp Neurol 413(2):289–304

    Article  CAS  PubMed  Google Scholar 

  18. Hinds JW, Hinds PL (1976) Synapse formation in the mouse olfactory bulb. I. Quantitative studies. J Comp Neurol 169(1):15–40

    Article  CAS  PubMed  Google Scholar 

  19. Newman-Gage H, Westrum LE, Bertram JF (1987) Stereological analysis of synaptogenesis in the molecular layer of piriform cortex in the prenatal rat. J Comp Neurol 261(2):295–305

    Article  CAS  PubMed  Google Scholar 

  20. Imamura F, Greer CA (2009) Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB. PLoS One 4(8):e6729

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bulfone A, Wang F, Hevner R, Anderson S, Cutforth T, Chen S, Meneses J, Pedersen R, Axel R, Rubenstein JL (1998) An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons. Neuron 21(6):1273–1282

    Article  CAS  PubMed  Google Scholar 

  22. Arnold SJ, Huang GJ, Cheung AF, Era T, Nishikawa S, Bikoff EK, Molnar Z, Robertson EJ, Groszer M (2008) The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev 22(18):2479–2484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shaker T, Dennis D, Kurrasch DM, Schuurmans C (2012) Neurog1 and Neurog2 coordinately regulate development of the olfactory system. Neural Dev 7:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mizuguchi R, Naritsuka H, Mori K, Yoshihara Y (2012) Tbr2 deficiency in mitral and tufted cells disrupts excitatory-inhibitory balance of neural circuitry in the mouse olfactory bulb. J Neurosci 32(26):8831–8844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246

    Article  CAS  PubMed  Google Scholar 

  26. Hashimoto-Torii K, Torii M, Sarkisian MR, Bartley CM, Shen J, Radtke F, Gridley T, Šestan N, Rakic P (2008) Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 60(2):273–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Torii M, Hashimoto-Torii K, Levitt P, Rakic P (2009) Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling. Nature 461(7263):524–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rašin MR, Gazula VR, Breunig JJ, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, Šestan N (2007) Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 10(7):819–827

    Article  PubMed  Google Scholar 

  29. dal Maschio M, Ghezzi D, Bony G, Alabastri A, Deidda G, Brondi M, Sato SS, Zaccaria RP, Di Fabrizio E, Ratto GM, Cancedda L (2012) High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat Commun 3:960

    Article  PubMed  Google Scholar 

  30. Matsui A, Tran M, Yoshida AC, Kikuchi SS, Ogawa UM, Shimogori T (2013) BTBD3 controls dendrite orientation toward active axons in mammalian neocortex. Science 342(6162):1114–1118

    Article  CAS  PubMed  Google Scholar 

  31. Bai J, Ramos RL, Paramasivam M, Siddiqi F, Ackman JB, LoTurco JJ (2008) The role of DCX and LIS1 in migration through the lateral cortical stream of developing forebrain. Dev Neurosci 30(1–3):144–156

    Article  CAS  PubMed  Google Scholar 

  32. Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y (2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 6(6):547–554

    Article  CAS  PubMed  Google Scholar 

  33. Stancik EK, Navarro-Quiroga I, Sellke R, Haydar TF (2010) Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J Neurosci 30(20):7028–7036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank all the members of Greer laboratory for technical assistance and discussion. This work was supported by NIH grants DC011134 (F.I.), DC000210, and DC012441 (C.A.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiaki Imamura Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Imamura, F., Greer, C.A. (2015). Electroporation in the Developing Mouse Olfactory Bulb. In: Saito, T. (eds) Electroporation Methods in Neuroscience. Neuromethods, vol 102. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2459-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2459-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2458-5

  • Online ISBN: 978-1-4939-2459-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics