Skip to main content

Ribosome Profiling: A Tool for Quantitative Evaluation of Dynamics in mRNA Translation

  • Protocol
  • First Online:
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1284))

Abstract

Translational regulation is important for plant growth, metabolism, and acclimation to environmental challenges. Ribosome profiling involves the nuclease digestion of mRNAs associated with ribosomes and mapping of the generated ribosome-protected footprints to transcripts. This is useful for investigation of translational regulation. Here we present a detailed method to generate, purify, and high-throughput-sequence ribosome footprints from Arabidopsis thaliana using two different isolation methods, namely, conventional differential centrifugation and the translating ribosome affinity purification (TRAP) technology. These methodologies provide researchers with an opportunity to quantitatively assess with high-resolution the translational activity of individual mRNAs by determination of the position and number of ribosomes in the corresponding mRNA. The results can provide insights into the translation of upstream open reading frames, alternatively spliced transcripts, short open reading frames, and other aspects of translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bailey-Serres J (2013) Microgenomics: genome-scale, cell-specific monitoring of multiple gene regulation tiers. Annu Rev Plant Biol 64:293–325

    Article  CAS  PubMed  Google Scholar 

  2. Gygi SP, Rochon Y, Franza BR et al (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Piques M, Schulze WX, Hohne M et al (2009) Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol Syst Biol 5:314. doi:10.1038/mbs.2009.1068

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bailey-Serres J, Sorenson R, Juntawong P (2009) Getting the message across: cytoplasmic ribonucleoprotein complexes. Trends Plant Sci 14:443–453

    Article  CAS  PubMed  Google Scholar 

  5. Kawaguchi R, Bailey-Serres J (2002) Regulation of translational initiation in plants. Curr Opin Plant Biol 5:460–465

    Article  CAS  PubMed  Google Scholar 

  6. Hummel M, Rahmani F, Smeekens S et al (2009) Sucrose-mediated translational control. Ann Bot 104:1–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Roy B, von Arnim AG (2013) Translational Regulation of Cytoplasmic mRNAs. Arabidopsis Book 11:e0165

    Article  PubMed Central  PubMed  Google Scholar 

  8. Horiguchi G, Van Lijsebettens M, Candela H et al (2012) Ribosomes and translation in plant developmental control. Plant Sci 191–192:24–34

    Article  PubMed  Google Scholar 

  9. Zanetti ME, Chang IF, Gong FC et al (2005) Immunopurification of polyribosomal complexes of arabidopsis for global analysis of gene expression. Plant Physiol 138:624–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mustroph A, Juntawong P, Bailey-Serres J (2009) Isolation of plant polysomal mRNA by differential centrifugation and ribosome immunopurification methods. Methods Mol Biol 553:109–126

    Article  CAS  PubMed  Google Scholar 

  11. Kim BH, Cai X, Vaughn JN et al (2007) On the functions of the h subunit of eukaryotic initiation factor 3 in late stages of translation initiation. Genome Biol 8:R60

    Article  PubMed Central  PubMed  Google Scholar 

  12. Tiruneh BS, Kim BH, Gallie DR et al (2013) The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant. BMC Biol 11:123

    Article  PubMed Central  PubMed  Google Scholar 

  13. Branco-Price C, Kawaguchi R, Ferreira RB et al (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Branco-Price C, Kaiser KA, Jang CJH et al (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J 56:743–755

    Article  CAS  PubMed  Google Scholar 

  15. Kawaguchi R, Girke T, Bray EA et al (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38:823–839

    Article  CAS  PubMed  Google Scholar 

  16. Pal SK, Liput M, Piques M et al (2013) Diurnal changes of polysome loading track sucrose content in the rosette of wild-type arabidopsis and the starchless pgm mutant. Plant Physiol 162:1246–1265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Liu MJ, Wu SH, Chen HM (2012) Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol Syst Biol 8:566

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sorenson R, Bailey-Serres J (2014) Selective mRNA sequestration by OLIGOURIDYLATE-BINDING PROTEIN 1 contributes to translational control during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A 111:2373–2378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Goeres DC, Van Norman JM, Zhang W et al (2007) Components of the Arabidopsis mRNA decapping complex are required for early seedling development. Plant Cell 19:1549–1564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhang W, Murphy C, Sieburth LE (2010) Conserved RNaseII domain protein functions in cytoplasmic mRNA decay and suppresses Arabidopsis decapping mutant phenotypes. Proc Natl Acad Sci U S A 107:15981–15985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Belostotsky DA, Meagher RB (1996) A pollen-, ovule-, and early embryo-specific poly(A) binding protein from Arabidopsis complements essential functions in yeast. Plant Cell 8:1261–1275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Iwasaki S, Takeda A, Motose H et al (2007) Characterization of Arabidopsis decapping proteins AtDCP1 and AtDCP2, which are essential for post-embryonic development. FEBS Lett 581:2455–2459

    Article  CAS  PubMed  Google Scholar 

  23. Steffens A, Jaegle B, Tresch A et al (2014) Processing-body movement in Arabidopsis depends on an interaction between myosins and DECAPPING PROTEIN1. Plant Physiol 16:1879–1892

    Article  Google Scholar 

  24. Xu J, Yang JY, Niu QW et al (2006) Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18:3386–3398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Xu J, Chua NH (2009) Arabidopsis decapping 5 is required for mRNA decapping, P-body formation, and translational repression during postembryonic development. Plant Cell 21:3270–3279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kawaguchi R, Bailey-Serres J (2005) mRNA sequence features that contribute to translational regulation in Arabidopsis. Nucleic Acids Res 33:955–965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mustroph A, Lee SC, Oosumi T et al (2010) Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol 152:1484–1500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Matsuura H, Ishibashi Y, Shinmyo A et al (2010) Genome-wide analyses of early translational responses to elevated temperature and high salinity in Arabidopsis thaliana. Plant Cell Physiol 51:448–462

    Article  CAS  PubMed  Google Scholar 

  29. Yanguez E, Castro-Sanz AB, Fernandez-Bautista N et al (2013) Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress. PLoS One 8:e71425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Juntawong P, Sorenson R, Bailey-Serres J (2013) Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana. Plant J 74:1016–1028

    Article  CAS  PubMed  Google Scholar 

  31. Sormani R, Delannoy E, Lageix S et al (2011) Sublethal cadmium intoxication in Arabidopsis thaliana impacts translation at multiple levels. Plant Cell Physiol 52:436–447

    Article  CAS  PubMed  Google Scholar 

  32. Juntawong P, Bailey-Serres J (2012) Dynamic light regulation of translation status in Arabidopsis thaliana. Front Plant Sci 3:66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Liu MJ, Wu SH, Wu JF et al (2013) Translational landscape of photomorphogenic Arabidopsis. Plant Cell 25:3699–3710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nicolai M, Roncato MA, Canoy AS et al (2006) Large-scale analysis of mRNA translation states during sucrose starvation in Arabidopsis cells identifies cell proliferation and chromatin structure as targets of translational control. Plant Physiol 141:663–673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Rosado A, Li R, van de Ven W et al (2012) Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors. Proc Natl Acad Sci U S A 109:19537–19544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Schepetilnikov M, Dimitrova M, Mancera-Martinez E et al (2013) TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J 32:1087–1102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Juntawong P, Girke T, Bazin J et al (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111:E203–E212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ribeiro DM, Araujo WL, Fernie AR et al (2012) Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J Exp Bot 63:2769–2786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Moghe GD, Lehti-Shiu MD, Seddon AE et al (2013) Characteristics and significance of intergenic polyadenylated RNA transcription in Arabidopsis. Plant Physiol 161:210–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mustroph A, Zanetti ME, Jang CJ et al (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A 106:18843–18848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mustroph A, Barding GA Jr, Kaiser KA et al (2014) Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C- and N-metabolism. Plant Cell Environ 37:2366–2380

    CAS  PubMed  Google Scholar 

  42. Aubry S, Smith-Unna RD, Boursnell CM et al (2014) Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J 78:659–673

    Article  CAS  PubMed  Google Scholar 

  43. Jiao Y, Meyerowitz EM (2010) Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol Syst Biol 6:419

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lin SY, Chen PW, Chuang MH et al (2014) Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. Plant Cell 26:602–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hummel M, Cordewener JH, de Groot JC et al (2012) Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics. Proteomics 12:1024–1038

    Article  CAS  PubMed  Google Scholar 

  46. Park SH, Chung PJ, Juntawong P et al (2012) Posttranscriptional control of photosynthetic mRNA decay under stress conditions requires 3′ and 5′ untranslated regions and correlates with differential polysome association in rice. Plant Physiol 159:1111–1124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Khandal D, Samol I, Buhr F et al (2009) Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley. Proc Natl Acad Sci U S A 106:13112–13117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Reynoso MA, Blanco FA, Bailey-Serres J et al (2012) Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. Plant J 73:289–301

    Article  Google Scholar 

  49. Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wolin SL, Walter P (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 7:3559–3569

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Arava Y, Wang Y, Storey JD et al (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100:3889–3894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Arava Y, Boas FE, Brown PO et al (2005) Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Res 33:2421–2432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Reddy AS, Marquez Y, Kalyna M et al (2013) Complexity of the alternative splicing landscape in plants. Plant Cell 25:3657–3683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ingolia NT, Ghaemmaghami S, Newman JR et al (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Guo H, Ingolia NT, Weissman JS et al (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hsieh AC, Liu Y, Edlind MP et al (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485:55–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336:233–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Ingolia NT (2010) Genome-wide translational profiling by ribosome footprinting. Methods Enzymol 470:119–142

    Article  CAS  PubMed  Google Scholar 

  62. Zoschke R, Watkins KP, Barkan A (2013) A rapid ribosome profiling method elucidates chloroplast ribosome behavior in vivo. Plant Cell 25:2265–2275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Kim YJ, Maizel A, Chen X (2014) Traffic into silence: endomembranes and post-transcriptional RNA silencing. EMBO J 33:968–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  65. Dugas DV, Bartel B (2008) Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol 67:403–417

    Article  CAS  PubMed  Google Scholar 

  66. Li S, Liu L, Zhuang X et al (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  68. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Guttman M, Russell P, Ingolia NT et al (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Mustroph A, Zanetti ME, Girke T et al (2013) Isolation and analysis of mRNAs from specific cell types of plants by ribosome immunopurification. Methods Mol Biol 959:277–302

    Article  CAS  PubMed  Google Scholar 

  71. Ingolia NT, Brar GA, Rouskin S et al (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ingolia NT, Brar GA, Rouskin S et al (2013) Genome-wide annotation and quantitation of translation by ribosome profiling. Curr Protoc Mol Biol Chapter 4:Unit 4.18

    Google Scholar 

Download references

Acknowledgements

We thank all of the individuals who have worked on polysome methods in the J.B.-S. group in the past, especially Cristina Branco-Price, Sheila Fennoy, Riki Kawaguchi, Angelika Mustroph, Reed Sorenson, Joanna Werner-Fraczek, Alan Williams, and Eugenia Zanetti and Nicholas Ingolia for helpful discussions on rRNA subtraction and cloning ribosome-protected fragments. This work was supported by the US National Science Foundation (IOS-0750811 to J. B.-S.) and MCB-1021969 (to J.B.-S.). J.B. was funded by Marie Curie European Economic Community Fellowship PIOF-GA-2012-327954.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Bailey-Serres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Juntawong, P., Hummel, M., Bazin, J., Bailey-Serres, J. (2015). Ribosome Profiling: A Tool for Quantitative Evaluation of Dynamics in mRNA Translation. In: Alonso, J., Stepanova, A. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 1284. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2444-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2444-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2443-1

  • Online ISBN: 978-1-4939-2444-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics