Skip to main content

Sample Collection and Preparation of Biofluids and Extracts for Gas Chromatography–Mass Spectrometry

  • Protocol
  • First Online:
Metabonomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1277))

Abstract

To maximize the utility of gas chromatography–mass spectrometry (GC-MS) in metabonomics research, all stages of the experimental design should be standardized, including sample collection, storage, preparation, and sample separation. Moreover, the prerequisite for any GC-MS analysis is that a compound must be volatile and thermally stable if it is to be analyzed using this technique. Since many metabolites are nonvolatile and polar in nature, they are not readily amenable to analysis by GC-MS and require initial chemical derivatization of the polar functional groups in order to reduce the polarity and to increase the thermal stability and volatility of the analytes. In this chapter, an overview is presented of the optimum approach to sample collection, storage, and preparation for gas chromatography–mass spectrometry-based metabonomics with particular focus on urine samples as example of biofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang Y, Cruickshank C, Armstrong M et al (2013) New sample preparation approach for mass spectrometry-based profiling of plasma results in improved coverage of metabolome. J Chromatogr A 1300:217–226

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Phua LC, Koh PK, Cheah PY et al (2013) Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces. J Chromatogr B Analyt Technol Biomed Life Sci 937:103–113

    CAS  PubMed  Google Scholar 

  3. Ibanez C, Simo C, Barupal DK et al (2013) A new metabolomic workflow for early detection of Alzheimer's disease. J Chromatogr A 1302:65–71

    CAS  PubMed  Google Scholar 

  4. Hu X, Li H, Tang P et al (2013) GC-MS-based metabolomics study of the responses to arachidonic acid in Blakeslea trispora. Fungal Genet Biol 57:33–41

    CAS  PubMed  Google Scholar 

  5. Ruiz-Aracama A, Lommen A, Huber M et al (2012) Application of an untargeted metabolomics approach for the identification of compounds that may be responsible for observed differential effects in chickens fed an organic and a conventional diet. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:323–332

    CAS  PubMed  Google Scholar 

  6. Kang Y-R, Park YS, Park YC et al (2012) UPLC/Q-TOF MS based metabolomics approach to post-mortem-interval discrimination: mass spectrometry based metabolomics approach. J Pharm Invest 42:41–46

    CAS  Google Scholar 

  7. Ciborowski M, Teul J, Luis Martin-Ventura J et al (2012) Metabolomics with LC-QTOF-MS permits the prediction of disease stage in aortic abdominal aneurysm based on plasma metabolic fingerprint. PLoS One 7:1–9

    Google Scholar 

  8. Becker S, Kortz L, Helmschrodt C et al (2012) LC-MS-based metabolomics in the clinical laboratory. J Chromatogr B Analyt Technol Biomed Life Sci 883:68–75

    PubMed  Google Scholar 

  9. Wilson ID, Plumb R, Granger J et al (2005) HPLC-MS-based methods for the study of metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci 817:67–76

    CAS  PubMed  Google Scholar 

  10. Morgenthal K, Wienkoop S, Scholz M et al (2005) Correlative GC-TOF-MS-based metabolite profiling and LC-MS-based protein profiling reveal time-related systemic regulation of metabolite-protein networks and improve pattern recognition for multiple biomarker selection. Metabolomics 1:109–121

    CAS  Google Scholar 

  11. Pohjanen E, Thysell E, Lindberg J et al (2006) Statistical multivariate metabolite profiling for aiding biomarker pattern detection and mechanistic interpretations in GC/MS based metabolomics. Metabolomics 2:257–268

    CAS  Google Scholar 

  12. Hummel J, Selbig J, Walther D et al (2007) The Golm Metabolome Database: a database for GC-MS based metabolite profiling. In: Nielsen J, Jewett MC (eds) Top Curr Genet. Topics in Current Genetics, Springer 18:75–95

    Google Scholar 

  13. Gaspari M, Verhoeckx KCM, Verheij ER et al (2006) Integration of two-dimensional LC-MS with multivariate statistics for comparative analysis of proteomic samples. Anal Chem 78:2286–2296

    CAS  PubMed  Google Scholar 

  14. Chen C, Gonzalez FJ, Idle JR (2007) LC-MS-based metabolomics in drug metabolism. Drug Metab Rev 39:581–597

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Allwood JW, Clarke A, Goodacre R et al (2010) Dual metabolomics: a novel approach to understanding plant-pathogen interactions. Phytochemistry 71:590–597

    PubMed  Google Scholar 

  16. Hollywood KA, Maatje M, Shadi IT et al (2010) Phenotypic profiling of keloid scars using FT-IR microspectroscopy reveals a unique spectral signature. Arch Dermatol Res 302:705–715

    PubMed  Google Scholar 

  17. Rodriguez-Fernandez JI, De Carvalho CJB, Pasquini C et al (2011) Barcoding without DNA? Species identification using near infrared spectroscopy. Zootaxa 2933:46–54

    Google Scholar 

  18. Wang H, Hollywood K, Jarvis RM et al (2010) Phenotypic characterization of Shewanella oneidensis MR-1 under aerobic and anaerobic growth conditions by using Fourier transform infrared spectroscopy and high-performance liquid chromatography analyses. Appl Environ Microbiol 76:6266–6276

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Al-Talla ZA, Akrawi SH, Emwas AHM (2011) Solid state NMR and bioequivalence comparison of the pharmacokinetic parameters of two formulations of clindamycin. Int J Clin Pharm Ther 49:469–476

    CAS  Google Scholar 

  20. Al-Talla ZA, Akrawi SH, Tolley LT et al (2011) Bioequivalence assessment of two formulations of ibuprofen. Drug Des Devel Ther 5:427–433

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Argyri AA, Doulgeraki AI, Blana VA et al (2011) Potential of a simple HPLC-based approach for the identification of the spoilage status of minced beef stored at various temperatures and packaging systems. Int J Food Microbiol 150:25–33

    CAS  PubMed  Google Scholar 

  22. van der Hooft JJJ, de Vos RCH, Mihaleva V et al (2012) Structural elucidation and quantification of phenolic conjugates present in human urine after tea intake. Anal Chem 84:7263–7271

    PubMed  Google Scholar 

  23. Wang Z, Hu H, Chen F et al (2012) Metabolic profiling assisted quality assessment of Rhodiola rosea extracts by high-performance liquid chromatography. Planta Med 78:740–746

    CAS  PubMed  Google Scholar 

  24. Yang J, Xu GW, Zheng YF et al (2004) Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B Analyt Technol Biomed Life Sci 813:59–65

    CAS  PubMed  Google Scholar 

  25. Zhang A-h, Sun H, Qiu S et al (2013) NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magn Reson Chem 51:549–556

    CAS  PubMed  Google Scholar 

  26. Zhang X, Xu L, Shen J et al (2013) Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochim Biophys Acta 1832:1207–1216

    CAS  PubMed  Google Scholar 

  27. Grimes JH, O'Connell TM (2011) The application of micro-coil NMR probe technology to metabolomics of urine and serum. J Biomol NMR 49:297–305

    CAS  PubMed  Google Scholar 

  28. Verwaest KA, Vu TN, Laukens K et al (2011) H-1 NMR based metabolomics of CSF and blood serum: a metabolic profile for a transgenic rat model of Huntington disease. Biochim Biophys Acta 1812:1371–1379

    CAS  PubMed  Google Scholar 

  29. Tiziani S, Emwas AH, Lodi A et al (2008) Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal Biochem 377:16–23

    CAS  PubMed  Google Scholar 

  30. Oommen JM, Hussain MM, Emwas A-HM et al (2010) Nuclear magnetic resonance study of nanoscale ionic materials. Electrochem Solid-State Lett 13:K87–K88

    CAS  Google Scholar 

  31. Mroue KH, Emwas A-HM, Power WP (2010) Solid-state Al-27 nuclear magnetic resonance investigation of three aluminum-centered dyes. Can J Chem 88:111–123

    CAS  Google Scholar 

  32. Linenberger KJ, Emwas A-H, Peat I et al (2009) Using NMR to determine the structure of a peptide: an inquiry approach for an upper level undergraduate laboratory. Abstr Pap Am Chem Soc 237

    Google Scholar 

  33. Emwas A-HM, Al-Talla ZA, Guo X et al (2013) Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. Magn Reson Chem 51:255–268

    CAS  PubMed  Google Scholar 

  34. Chu S, Maltsev S, Emwas AH et al (2010) Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. J Magn Reson 207:89–94

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Abuhijleh AL, Abu Ali H, Emwas A-H (2009) Synthesis, spectral and structural characterization of dinuclear rhodium (II) complexes of the anticonvulsant drug valproate with theophylline and caffeine. J Organomet Chem 694:3590–3596

    CAS  Google Scholar 

  36. Ravenscroft N, Dabrowski J, Romanowska E (1995) Structural elucidation of the biological repeating unit of O-specific polysaccharide from Citrobacter serotype O41. Eur J Biochem 229:299–307

    CAS  PubMed  Google Scholar 

  37. Pliev TN (1987) Complex method of identification of molecular structures of substituted phenols from their IR, UV, and NMR spectra. J Appl Spectrosc 47:1259–1263

    Google Scholar 

  38. Oda Y, Uesugi S, Ikehara M et al (1991) NMR studies for identification of dI:dG mismatch base-pairing structure in DNA. Nucleic Acids Res 19:5263–5267

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Sahloul N, Emwas A, Power W et al (2005) Ethyl acrylate-hydroxyethyl acrylate and hydroxyethyl acrylate-methacrylic acid: reactivity ratio estimation from cross-linked polymer using high resolution magic angle spinning spectroscopy. J Macromol Sci Pure Appl Chem A42:1369–1385

    CAS  Google Scholar 

  40. Atiqullah M, Anantawaraskul S, Emwas A-HM et al (2013) Effects of supported ((BuCp)-Bu-n)(2)ZrCl2 catalyst active-center distribution on ethylene-1-hexene copolymer backbone heterogeneity and thermal behaviors. Ind Eng Chem Res 52:9359–9373

    CAS  Google Scholar 

  41. Bouhrara M, Ranga C, Fihri A et al (2013) Nitridated fibrous silica (KCC-1) as a sustainable solid base nanocatalyst. ACS Sustainable Chem Eng 1:1192–1199

    CAS  Google Scholar 

  42. Jackson MD, Moon J, Gotti E et al (2013) Material and elastic properties of Al-tobermorite in ancient roman seawater concrete. J Am Ceram Soc 96:2598–2606

    CAS  Google Scholar 

  43. Kamal MS, Bahuleyan BK, Sohail OB et al (2013) Crystallization analysis fractionation of poly(ethylene-co-styrene) produced by metallocene catalysts. Polym Bull 70:2645–2656

    CAS  Google Scholar 

  44. Nageeb A, Al-Tawashi A, Mohammad Emwas A-H et al (2013) Comparison of Artemisia annua bioactivities between traditional medicine and chemical extracts. Curr Bioact Compd 9:324–332

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Khan MT, Busch M, Molina VG et al (2014) How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes? Water Res 59:271–282

    CAS  PubMed  Google Scholar 

  46. Patil U, Fihri A, Emwas A-H et al (2012) Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO2 capture with excellent stability and regenerability. Chem Sci 3:2224–2229

    CAS  Google Scholar 

  47. Kirchheim A, Dal Molin D, Fischer P et al (2011) Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates. Inorg Chem 50:1203–1212

    CAS  PubMed  Google Scholar 

  48. Jackson MD, Chae SR, Mulcahy SR et al (2013) Unlocking the secrets of Al-tobermorite in Roman seawater concrete. Am Mineral 98:1669–1687

    CAS  Google Scholar 

  49. Decken A, Mattar SM, Emwas A (2005) 1,4,11,12-Tetrahydro-9,10-anthraquinone. Acta Crystallogr Sect E Struct Rep Online 61:O641–O642

    CAS  Google Scholar 

  50. Gloggler S, Colell J, Appelt S (2013) Para-hydrogen perspectives in hyperpolarized NMR. J Magn Reson 235:130–142

    CAS  PubMed  Google Scholar 

  51. Ellena S, Viale A, Gobetto R et al (2012) Para-hydrogen induced polarization of Si-29 NMR resonances as a potentially useful tool for analytical applications. Magn Reson Chem 50:529–533

    CAS  PubMed  Google Scholar 

  52. Hamans BC, Andreychenko A, Heerschap A et al (2011) NMR at earth's magnetic field using para-hydrogen induced polarization. J Magn Reson 212:224–228

    CAS  PubMed  Google Scholar 

  53. Sze KH, Wu Q, Tse HS et al (2012) Dynamic nuclear polarization: new methodology and applications. In: Zhu G (ed) NMR of proteins and small biomolecules. Topics in Current Chemistry, Springer 326:215–242

    Google Scholar 

  54. Tuerke M-T, Tkach I, Reese M et al (2010) Optimization of dynamic nuclear polarization experiments in aqueous solution at 15 MHz/9.7 GHz: a comparative study with DNP at 140 MHz/94 GHz. Phys Chem Chem Phys 12:5893–5901

    CAS  Google Scholar 

  55. Ludwig C, Marin-Montesinos I, Saunders MG et al (2010) Application of ex situ dynamic nuclear polarization in studying small molecules. Phys Chem Chem Phys 12:5868–5871

    CAS  PubMed  Google Scholar 

  56. Emwas AH, Saunders M, Ludwig C et al (2008) Determinants for optimal enhancement in ex situ DNP experiments. Appl Magn Reson 34:483–494

    CAS  Google Scholar 

  57. Mattar SM, Stephens AD, Emwas AH (2002) Generation and spectroscopic characterization of the 2,3,5,6-tetramethoxy-1,4-benzosemiquinone reactive intermediate. Chem Phys Lett 352:39–47

    CAS  Google Scholar 

  58. Raji M, Amad M, Emwas A-H (2013) Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 27:1260–1266

    CAS  PubMed  Google Scholar 

  59. Sannino A, Bolzoni L (2013) GC/CI-MS/MS method for the identification and quantification of volatile N-nitrosamines in meat products. Food Chem 141:3925–3930

    CAS  PubMed  Google Scholar 

  60. Mitrevski BS, Kouremenos KA, Marriott PJ (2009) Accelerating analysis for metabolomics, drugs and their metabolites in biological samples using multidimensional gas chromatography. Bioanalysis 1:367–391

    CAS  PubMed  Google Scholar 

  61. Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286:25435–25442

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Kim S, Fang A, Wang B et al (2011) An optimal peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry using mixture similarity measure. Bioinformatics 27:1660–1666

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Harder U, Koletzko B, Peissner W (2011) Quantification of 22 plasma amino acids combining derivatization and ion-pair LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 879:495–504

    CAS  PubMed  Google Scholar 

  64. Wolfender J-L, Rudaz S, Choi YH et al (2013) Plant metabolomics: from holistic data to relevant biomarkers. Curr Med Chem 20:1056–1090

    CAS  PubMed  Google Scholar 

  65. Van der Hooft JJJ, Vervoort J, Bino RJ et al (2012) Spectral trees as a robust annotation tool in LC-MS based metabolomics. Metabolomics 8:691–703

    Google Scholar 

  66. Marti G, Erb M, Boccard J et al (2013) Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ 36:621–639

    CAS  PubMed  Google Scholar 

  67. Cho K, Kim Y, Wi SJ et al (2012) Nontargeted metabolite profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L. cv. Wisconsin 38) using UPLC-Q-TOF/MS. J Agric Food Chem 60:11015–11028

    PubMed  Google Scholar 

  68. Wolfender J-L, Glauser G, Boccard J et al (2009) MS-based plant metabolomic approaches for biomarker discovery. Nat Prod Commun 4:1417–1430

    CAS  PubMed  Google Scholar 

  69. Koenig S (2011) Urine molecular profiling distinguishes health and disease: new methods in diagnostics? Focus on UPLC-MS. Expert Rev Mol Diagn 11:383–391

    CAS  Google Scholar 

  70. Goulitquer S, Potin P, Tonon T (2012) Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. Mar Drugs 10:849–880

    PubMed Central  CAS  PubMed  Google Scholar 

  71. De Vos RCH, Schipper B, Hall RD (2012) High-performance liquid chromatography-mass spectrometry analysis of plant metabolites in brassicaceae. Methods Mol Biol 860:111–128

    PubMed  Google Scholar 

  72. Kopka J (2006) Current challenges and developments in GC-MS based metabolite profiling technology. J Biotechnol 124:312–322

    CAS  PubMed  Google Scholar 

  73. Kim J, Choi JN, Kim P et al (2009) LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus. J Microbiol Biotechnol 19:51–54

    CAS  PubMed  Google Scholar 

  74. Hagel JM, Facchini PJ (2008) Plant metabolomics: analytical platforms and integration with functional genomics. Phytochem Rev 7:479–497

    CAS  Google Scholar 

  75. Lee SJ, Choi JY, Park S et al (2010) Determination of phospholipids in soybean (Glycine max (L.) Merr) cultivars by liquid chromatography-tandem mass spectrometry. J Food Compos Anal 23:314–318

    CAS  Google Scholar 

  76. Kumar MS, Pandita NS, Pal AK (2012) LC-MS/MS as a tool for identification of bioactive compounds in marine sponge Spongosorites halichondriodes. Toxicon 60:1135–1147

    CAS  PubMed  Google Scholar 

  77. Jin Y, Xiao Y-s, Zhang F-f et al (2008) Systematic screening and characterization of flavonoid glycosides in Carthamus tinctorius L. by liquid chromatography/UV diode-array detection/electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 46:418–430

    CAS  PubMed  Google Scholar 

  78. Cao X-w, Shen W-j, Zhu J et al (2013) A comparative study of the ionization modes in GC-MS multi-residue method for the determination of organochlorine pesticides and polychlorinated biphenyls in crayfish. Food Anal Methods 6:445–456

    Google Scholar 

  79. Osemwengie LI (2006) Determination of synthetic musk compounds in sewage biosolids by gas chromatography/mass spectrometry. J Environ Monit 8:897–903

    CAS  PubMed  Google Scholar 

  80. Kalachova K, Pulkrabova J, Cajka T et al (2013) Gas chromatography-triple quadrupole tandem mass spectrometry: a powerful tool for the (ultra)trace analysis of multiclass environmental contaminants in fish and fish feed. Anal Bioanal Chem 405:7803–7815

    CAS  PubMed  Google Scholar 

  81. Kalachova K, Cajka T, Sandy C et al (2013) High throughput sample preparation in combination with gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS): a smart procedure for (ultra)trace analysis of brominated flame retardants in fish. Talanta 105:109–116

    CAS  PubMed  Google Scholar 

  82. Hook GL, Kimm GL, Hall T et al (2002) Solid-phase microextraction (SPME) for rapid field sampling and analysis by gas chromatography-mass spectrometry (GC-MS). Trends Anal Chem 21:534–543

    CAS  Google Scholar 

  83. Datta S, Do LV, Young TM (2004) A simplified method for sampling and analysis of high volume surface water for organic contaminants using XAD-2. J Environ Sci Health B 39:225–234

    PubMed  Google Scholar 

  84. Cohen S, Manat A, Dumont B et al (2010) Toxicologic blood emergency screening. Comparison of two techniques: Remedi versus GC-MS. Ann Biol Clin (Paris) 68:163–172

    CAS  Google Scholar 

  85. Bourdeaux D, Sautou-Miranda V, Montagner A et al (2010) Simple assay of plasma sevoflurane and its metabolite hexafluoroisopropanol by headspace GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 878:45–50

    CAS  PubMed  Google Scholar 

  86. Wang H, Zhang J, Gao F et al (2011) Simultaneous analysis of synthetic musks and triclosan in human breast milk by gas chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 879:1861–1869

    CAS  PubMed  Google Scholar 

  87. Wang G, Tang H, Chen D et al (2012) Determination of five synthetic musks in perfume by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Se Pu 30:135–140

    PubMed  Google Scholar 

  88. Ramirez N, Maria Marce R, Borrull F (2011) Development of a stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry method for determining synthetic musks in water samples. J Chromatogr A 1218:156–161

    CAS  PubMed  Google Scholar 

  89. Jellum E, Stokke O, Eldjarn L (1973) Application of gas chromatography, mass spectrometry, and computer methods in clinical biochemistry. Anal Chem 46:1099–1106

    CAS  PubMed  Google Scholar 

  90. Shoemaker JD, Elliott WH (1991) Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr B 562:125–138

    CAS  Google Scholar 

  91. Kuhara T (2005) Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom Rev 24:814–827

    CAS  PubMed  Google Scholar 

  92. Nieman DC, Shanely RA, Gillitt ND et al (2013) Serum metabolic signatures induced by a three-day intensified exercise period persist after 14 h of recovery in runners. J Proteome Res 12:4577–4584

    CAS  PubMed  Google Scholar 

  93. Pasikanti KK, Ho PC, Chan ECY (2008) Development and validation of a gas chromatography/mass spectrometry metabonomic platform for the global profiling of urinary metabolites. Rapid Commun Mass Spectrom 22:2984–2992

    CAS  PubMed  Google Scholar 

  94. Fancy S-A, Beckonert O, Darbon G et al (2006) Gas chromatography/flame ionisation detection mass spectrometry for the detection of endogenous urine metabolites for metabonomic studies and its, use as a complementary tool to nuclear magnetic resonance spectroscopy. Rapid Commun Mass Spectrom 20:2271–2280

    CAS  PubMed  Google Scholar 

  95. Chen J, Zhao X, Fritsche J et al (2008) Practical approach for the identification and isomer elucidation of biomarkers detected in a metabonomic study for the discovery of individuals at risk for diabetes by integrating the chromatographic and mass spectrometric information. Anal Chem 80:1280–1289

    CAS  PubMed  Google Scholar 

  96. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Nakamizo S, Sasayama T, Shinohara M et al (2013) GC/MS-based metabolomic analysis of cerebrospinal fluid (CSF) from glioma patients. J Neurooncol 113:65–74

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Emond P, Mavel S, Aidoud N et al (2013) GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem 405:5291–5300

    CAS  PubMed  Google Scholar 

  99. Tsugawa H, Bamba T, Shinohara M et al (2011) Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis. J Biosci Bioeng 112:292–298

    CAS  PubMed  Google Scholar 

  100. Ooi M, Nishiumi S, Yoshie T et al (2011) GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Inflamm Res 60:831–840

    CAS  PubMed  Google Scholar 

  101. Gao X, Zhao A, Zhou M et al (2011) GC/MS-based urinary metabolomics reveals systematic differences in metabolism and ethanol response between Sprague-Dawley and Wistar rats. Metabolomics 7:363–374

    CAS  Google Scholar 

  102. Cevallos-Cevallos JM, Garcia-Torres R, Etxeberria E et al (2011) GC-MS analysis of headspace and liquid extracts for metabolomic differentiation of citrus Huanglongbing and zinc deficiency in leaves of ‘Valencia’ sweet orange from commercial groves. Phytochem Anal 22:236–246

    CAS  PubMed  Google Scholar 

  103. Zhang Q, Wang G-j, A J-y et al (2009) Application of GC/MS-based metabonomic profiling in studying the lipid-regulating effects of Ginkgo biloba extract on diet-induced hyperlipidemia in rats. Acta Pharmacol Sin 30:1674–1687

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Kuhara T, Ohse M, Inoue Y et al (2009) Urinary metabolic profile of phenylketonuria in patients receiving total parenteral nutrition and medication. Rapid Commun Mass Spectrom 23:3167–3172

    CAS  PubMed  Google Scholar 

  105. Chan ECY, Pasikanti KK, Nicholson JK (2011) Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat Protoc 6:1483–1499

    CAS  PubMed  Google Scholar 

  106. Bernini P, Bertini I, Luchinat C et al (2011) Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR 49:231–243

    CAS  PubMed  Google Scholar 

  107. Diaz SO, Barros AS, Goodfellow BJ et al (2013) Following healthy pregnancy by nuclear magnetic resonance (NMR) metabolic profiling of human urine. J Proteome Res 12:969–979

    CAS  PubMed  Google Scholar 

  108. Emwas A-HM, Salek RM, Griffin JL et al (2013) NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics 9:1048–1072

    CAS  Google Scholar 

  109. Rist MJ, Muhle-Goll C, Görling B et al (2013) Influence of freezing and storage procedure on human urine samples in NMR-based metabolomics. Metabolites 3:243–258

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Gika HG, Theodoridis GA, Wilson ID (2008) Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine—sample stability under different handling and storage conditions for metabonomics studies. J Chromatogr A 1189:314–322

    CAS  PubMed  Google Scholar 

  111. Lauridsen M, Hansen SH, Jaroszewski JW et al (2007) Human urine as test material in H-1 NMR-based metabonomics: recommendations for sample preparation and storage. Anal Chem 79:1181–1186

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank King Abdullah University of Science and Technology for the financial support and Dr. Virginia Unkefer from KAUST and Dr. Christina Morris for their assistance and helpful editorial remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Hamid M. Emwas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Emwas, AH.M., Al-Talla, Z.A., Kharbatia, N.M. (2015). Sample Collection and Preparation of Biofluids and Extracts for Gas Chromatography–Mass Spectrometry. In: Bjerrum, J. (eds) Metabonomics. Methods in Molecular Biology, vol 1277. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2377-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2377-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2376-2

  • Online ISBN: 978-1-4939-2377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics