Skip to main content

Dynamic Single-Molecule Force Spectroscopy of Rhodopsin in Native Membranes

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

Abstract

Membrane proteins are an important class of proteins in biology and therapeutics. Understanding the dynamic nature of the molecular interactions that stabilize membrane protein structure is critical to dissect the mechanism of action and dysfunction of these proteins. Single-molecule force spectroscopy (SMFS) and dynamic SMFS (DFS) are emerging nanotechniques that allow the study of membrane proteins under the physiologically relevant conditions of a lipid bilayer and buffer conditions. These techniques directly probe the molecular interactions underlying protein structure and reveal unique insights about their properties. Outlined in this report will be procedures on how to conduct SMFS and DFS on rhodopsin in native retinal membranes. Rhodopsin is a membrane protein belonging to the G protein-coupled receptor family of proteins, one of the largest families of proteins in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Müller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47:7986–7998

    Article  PubMed  Google Scholar 

  2. Whited AM, Park PS (2014) Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta 1838:56–68

    Article  CAS  PubMed  Google Scholar 

  3. Kedrov A, Janovjak H, Sapra KT et al (2007) Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu Rev Biophys Biomol Struct 36:233–260

    Article  CAS  PubMed  Google Scholar 

  4. Papermaster DS, Dreyer WJ (1974) Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–2444

    Article  CAS  PubMed  Google Scholar 

  5. Sapra KT, Park PS, Filipek S et al (2006) Detecting molecular interactions that stabilize native bovine rhodopsin. J Mol Biol 358:255–269

    Article  Google Scholar 

  6. Park PS, Sapra KT, Kolinski M et al (2007) Stabilizing effect of Zn2+ in native bovine rhodopsin. J Biol Chem 282:11377–11385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Park PS, Sapra KT, Jastrzebska B et al (2009) Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry 48:4294–4304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Evans E (2001) Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30:105–128

    Article  CAS  PubMed  Google Scholar 

  9. Sapra KT, Park PS, Palczewski K et al (2008) Mechanical properties of bovine rhodopsin and bacteriorhodopsin: possible roles in folding and function. Langmuir 24:1330–1337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kawamura S, Colozo AT, Müller DJ et al (2010) Conservation of molecular interactions stabilizing bovine and mouse rhodopsin. Biochemistry 49:10412–10420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Mendes HF, van der Spuy J, Chapple JP et al (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    Article  CAS  PubMed  Google Scholar 

  12. Sieving PA, Richards JE, Naarendorp F et al (1995) Dark-light: model for nightblindness from the human rhodopsin Gly-90 –> Asp mutation. Proc Natl Acad Sci U S A 92:880–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kawamura S, Colozo AT, Ge L et al (2012) Structural, energetic, and mechanical perturbations in rhodopsin mutant that causes congenital stationary night blindness. J Biol Chem 287:21826–21835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kawamura S, Gerstung M, Colozo AT et al (2013) Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin. Structure 21:426–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Zocher M, Fung JJ, Kobilka BK et al (2012) Ligand-specific interactions modulate kinetic, energetic, and mechanical properties of the human beta2 adrenergic receptor. Structure 20:1391–1402

    Article  CAS  PubMed  Google Scholar 

  16. Müller DJ, Engel A (2007) Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc 2:2191–2197

    Article  PubMed  Google Scholar 

  17. Fotiadis D, Müller DJ (2013) High-resolution imaging of 2D outer membrane protein F crystals by atomic force microscopy. Methods Mol Biol 955:461–474

    Article  CAS  PubMed  Google Scholar 

  18. Sapra KT (2013) Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers. Methods Mol Biol 974:73–110

    Article  CAS  PubMed  Google Scholar 

  19. Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  20. Bustamante C, Marko JF, Siggia ED et al (1994) Entropic elasticity of lambda-phage DNA. Science 265:1599–1600

    Article  CAS  PubMed  Google Scholar 

  21. Evans E (1999) Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. Biophys Chem 82:83–97

    Article  CAS  PubMed  Google Scholar 

  22. Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61

    CAS  PubMed  Google Scholar 

  23. Bosshart PD, Casagrande F, Frederix PL et al (2008) High-throughput single-molecule force spectroscopy for membrane proteins. Nanotechnology 19:384014

    Article  PubMed  Google Scholar 

  24. Bosshart PD, Frederix PL, Engel A (2012) Reference-free alignment and sorting of single-molecule force spectroscopy data. Biophys J 102:2202–2211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Struckmeier J, Wahl R, Leuschner M et al (2008) Fully automated single-molecule force spectroscopy for screening applications. Nanotechnology 19:384020

    Article  PubMed  Google Scholar 

  26. Rief M, Gautel M, Oesterhelt F et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  CAS  PubMed  Google Scholar 

  27. Müller DJ, Kessler M, Oesterhelt F et al (2002) Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Biophys J 83:3578–3588

    Article  PubMed Central  PubMed  Google Scholar 

  28. Dietz H, Rief M (2004) Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc Natl Acad Sci U S A 101:16192–16197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bieri O, Wirz J, Hellrung B et al (1999) The speed limit for protein folding measured by triplet-triplet energy transfer. Proc Natl Acad Sci U S A 96:9597–9601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

Download references

Acknowledgments

This work was funded by the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement n° [211800], Swiss National Science Foundation, National Institutes of Health (R01EY021731), and Research to Prevent Blindness (Career Development Award).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S.-H. Park Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Park, P.SH., Müller, D.J. (2015). Dynamic Single-Molecule Force Spectroscopy of Rhodopsin in Native Membranes. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics