Skip to main content

Use of Artificial Neural Networks in the QSAR Prediction of Physicochemical Properties and Toxicities for REACH Legislation

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1260))

Abstract

With the introduction of the REACH legislation in the European Union, there is a requirement for property and toxicity data on chemicals produced in or imported into the EU at levels of 1 tonne/year or more. This has meant an increase in the in silico prediction of such data. One of the chief predictive approaches is QSAR (quantitative structure–activity relationships), which is widely used in many fields.

A QSAR approach that is increasingly being used is that of artificial neural networks (ANNs), and this chapter discusses its application to the range of physicochemical properties and toxicities required by REACH. ANNs generally outperform the main QSAR approach of multiple linear regression (MLR), although other approaches such as support vector machines sometimes outperform ANNs. Most ANN QSARs reported to date comply with only two of the five OECD Guidelines for the Validation of (Q)SARs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Parliament: Regulation (EC) N° 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=oj:l:2006:396:0001:0849:en:pdf. Accessed 5 Jan 2014

  2. Hansch C, Clayton JM (1973) Lipophilic character and activity of drugs II: the parabolic case. J Pharm Sci 62:1–23

    Article  CAS  PubMed  Google Scholar 

  3. Cronin MTD, Gregory BW, Schultz TW (1998) Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis. Chem Res Toxicol 11:902–908

    Article  CAS  PubMed  Google Scholar 

  4. Devillers J (ed) (1996) Neural networks in QSAR and drug design. Academic, London

    Google Scholar 

  5. Gasteiger J, Engel T (2003) Chemoinformatics—a textbook. Wiley, Weinheim

    Book  Google Scholar 

  6. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Francisco

    Google Scholar 

  7. Devillers J (1996) Strengths and weaknesses of the backpropagation neural network QSPR studies. In: Devillers J (ed) Neural networks in QSAR and drug design. Academic, London, pp 1–46

    Chapter  Google Scholar 

  8. ECHA Guidance on information requirements and safety assessment. Chapter R.6. QSARs and grouping of chemicals, 2008. Available at http://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf. Accessed 5 Jan 2014

    Google Scholar 

  9. OECD Principles for the Validation of (Q)SARs. Available at http://www.oecd.org/dataoecd/33/37/37849783.pdf. Accessed 5 Jan 2014

  10. OECD Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology. Available at http://www.olis.oecd.org/olis/2004doc.nsf/LinkTo/NT00009192/$FILE/JT00176183.PDF. Accessed 5 Jan 2014

  11. Fjodorova N, Novich M, Vrachko M et al (2008) Directions in QSAR modeling for regulatory use in OECD member countries, EU and in Russia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26:201–236

    Article  PubMed  Google Scholar 

  12. Devillers J (2005) A new strategy for using supervised artificial neural networks in QSAR. SAR QSAR Environ Res 16:433–442

    Article  CAS  PubMed  Google Scholar 

  13. Baskin II, Palyulin VA, Zefirov NS (2008) Neural networks in building QSAR models. In: Livingstone DS (ed) Artificial neural networks: methods and protocols. Humana Press, New York, pp 137–158

    Google Scholar 

  14. Devillers J (2009) Artificial neural network modeling of the environmental fate and ecotoxicity of chemicals. In: Devillers J (ed) Ecotoxicology modeling. Springer, Dordrecht, pp 1–28

    Chapter  Google Scholar 

  15. Gleeson MP, Modi S, Bender A et al (2012) The challenges involved in modelling toxicity data in silico: a review. Curr Pharm Des 18:1266–1291

    Article  CAS  PubMed  Google Scholar 

  16. Moore DRJ, Breton RL, MacDonald DB (2003) A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish. Environ Toxicol Chem 22:1799–1809

    Article  CAS  PubMed  Google Scholar 

  17. Fatemi MH, Abraham MH, Haghdadi M (2009) Prediction of biomagnification factors for some organochlorine compounds using linear free energy relationship parameters and artificial neural networks. SAR QSAR Environ Res 20:453–465

    Article  CAS  PubMed  Google Scholar 

  18. Tan N-X, Li P, Rao H-B et al (2010) Prediction of the acute toxicity of chemical compounds to the fathead minnow by machine learning approaches. Chemometr Intell Lab Syst 100:66–73

    Article  CAS  Google Scholar 

  19. Dearden JC, Cronin MTD, Kaiser KLE (2009) How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res 20:241–266

    Article  CAS  PubMed  Google Scholar 

  20. Baskin II, Ait AO, Halberstam NM et al (2002) An approach to the interpretation of backpropagation neural network models in QSAR studies. SAR QSAR Environ Res 13:35–41

    Article  CAS  PubMed  Google Scholar 

  21. Guha R, Jurs PC (2005) Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inf Model 45:800–806

    Article  CAS  PubMed  Google Scholar 

  22. Guha R, Stanton DT, Jurs PC (2005) Interpreting computational neural network QSAR models: a detailed interpretation of the weights and biases. J Chem Inf Model 45:1109–1121

    Article  CAS  PubMed  Google Scholar 

  23. Chaudhry Q, Piclin N, Cotterill J et al (2010) Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J 4(Suppl 1):S1–S6

    Article  CAS  Google Scholar 

  24. Johnson SR (2008) The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J Chem Inf Model 48:25–26

    Article  CAS  PubMed  Google Scholar 

  25. Enoch SJ, Madden JC, Cronin MTD (2008) Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR QSAR Environ Res 19:555–578

    Article  CAS  PubMed  Google Scholar 

  26. Vračko M, Bandelj V, Barbier P et al (2006) Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study. SAR QSAR Environ Res 17:265–284

    Article  PubMed  CAS  Google Scholar 

  27. Worth AP (2010) The role of QSAR methodology in the regulatory assessment of chemicals. In: Puzyn T, Leszczynski J, Cronin MTD (eds) Recent advances in QSAR studies: methods and applications. Springer, Dordrecht, pp 367–382

    Chapter  Google Scholar 

  28. (Q)SAR Model Reporting Format. Available at http://qsardb.jrc.it/qmrf. Accessed 16 Jan 2014

  29. ECHA Guidance on information requirements and chemical safety assessment. Chapter R.7a. Endpoint specific guidance, in Guidance for the Implementation of REACH, ECHA, Helsinki, 2012. Available at http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure. Accessed 25 Jan 2014

  30. Regulation (EC) No. 1907/2006 of the European Parliament and of the Council of 18 December 2006. Available at http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2006. Accessed 25 Jan 2014

  31. Dearden JC, Rotureau P, Fayet G (2013) QSPR prediction of physico-chemical properties for REACH. SAR QSAR Environ Res 24:279–318

    Article  CAS  PubMed  Google Scholar 

  32. Taskinen J, Yliruusi J (2003) Prediction of physicochemical properties based on neural network modelling. Adv Drug Deliv Rev 55:1163–1183

    Article  CAS  PubMed  Google Scholar 

  33. Godavarthy SS, Robinson RL, Gasem KAM (2006) An improved structure-property model for predicting melting-point temperatures. Ind Eng Chem Res 45:5117–5126

    Article  CAS  Google Scholar 

  34. Karthikeyan M, Glen RC, Bender A (2005) General melting point prediction based on a diverse compound data set and artificial neural networks. J Chem Inf Model 45:581–590

    Article  CAS  PubMed  Google Scholar 

  35. Hall LH, Story CT (1996) Boiling point and critical temperature of a heterogeneous data set. QSAR with atom type electrotopological state indices using artificial neural networks. J Chem Inf Comput Sci 36:1004–1014

    Article  CAS  Google Scholar 

  36. Chalk AJ, Beck B, Clark T (2001) A quantum mechanical/neural network model for boiling points with error estimation. J Chem Inf Comput Sci 41:457–462

    Article  CAS  PubMed  Google Scholar 

  37. Gakh AA, Gakh EG, Sumpter BG et al (1994) Neural network-graph theory approach to the prediction of the physical properties of organic compounds. J Chem Inf Comput Sci 34:832–839

    Article  CAS  Google Scholar 

  38. Valderrama JO, Reátegui A, Rojas RE (2009) Density of ionic liquids using group contribution and artificial neural networks. Ind Eng Chem Res 48:3254–3259

    Article  CAS  Google Scholar 

  39. McClelland HE, Jurs PC (2000) Quantitative structure-property relationships for the prediction of vapor pressures of organic compounds from molecular structure. J Chem Inf Comput Sci 40:967–975

    Article  CAS  PubMed  Google Scholar 

  40. Chalk AJ, Beck B, Clark T (2001) A temperature-dependent quantum mechanical/neural net model for vapor pressure. J Chem Inf Comput Sci 41:1053–1059

    Article  CAS  PubMed  Google Scholar 

  41. Roosta A, Setoodeh P, Jahanmiri A (2012) Artificial neural network modeling of surface tension for pure organic compounds. Ind Eng Chem Res 51:561–566

    Article  CAS  Google Scholar 

  42. Gharagheizi F, Eslamimanesh A, Mohammadi AH et al (2011) Use of artificial neural network-group contribution method to determine surface tension of pure compounds. J Chem Eng Data 56:2587–2601

    Article  CAS  Google Scholar 

  43. Dearden JC (2006) In silico prediction of aqueous solubility. Expert Opin Drug Discov 1:31–52

    Article  CAS  PubMed  Google Scholar 

  44. Yan A, Gasteiger J (2003) Prediction of aqueous solubility of organic compounds based on a 3D structure representation. J Chem Inf Comput Sci 43:429–434

    Article  CAS  PubMed  Google Scholar 

  45. Katritzky AR, Wang Y, Sild S et al (1998) QSPR studies on vapor pressure, aqueous solubility, and the prediction of water-air partition coefficients. J Chem Inf Comput Sci 38:720–725

    Article  CAS  Google Scholar 

  46. Bruneau P (2001) Search for predictive generic model of aqueous solubility using Bayesian neural nets. J Chem Inf Comput Sci 41:1605–1616

    Article  CAS  PubMed  Google Scholar 

  47. Livingstone DJ (2003) Theoretical property predictions. Curr Top Med Chem 3:1171–1192

    Article  CAS  PubMed  Google Scholar 

  48. Klopman G, Zhu H (2005) Recent methodologies for the estimation of n-octanol-water partition coefficients and their use in the prediction of membrane transport properties of drugs. Mini Rev Med Chem 5:127–133

    Article  CAS  PubMed  Google Scholar 

  49. Chen H-F (2009) In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression. Chem Biol Drug Des 74:142–147

    Article  CAS  PubMed  Google Scholar 

  50. Tetko IV, Tanchuk VY, Villa AEP (2001) Prediction of n-octanol-water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices. J Chem Inf Comput Sci 41:1407–1421

    Article  CAS  PubMed  Google Scholar 

  51. Kier LB, Hall LH (1999) Molecular structure description: the electrotopological state. Academic, New York

    Google Scholar 

  52. Katritzky AR, Stoyanova-Slavova IB, Dobchev DA et al (2007) QSPR modelling of flash points: an update. J Mol Graph Model 26:529–536

    Article  CAS  PubMed  Google Scholar 

  53. Gharagheizi F, Alamdari RF, Angaji MT (2008) A new neural network-group contribution method for estimation of flash point temperature of pure components. Energy Fuel 22:1628–1635

    Article  CAS  Google Scholar 

  54. Gharagheizi F (2010) Chemical structure-based model for estimation of the upper flammability limit of pure compounds. Energy Fuel 24:3867–3871

    Article  CAS  Google Scholar 

  55. Gharagheizi F (2009) Prediction of upper flammability limit percent of pure compounds from their molecular structures. J Hazard Mater 167:507–510

    Article  CAS  PubMed  Google Scholar 

  56. Gharagheizi F (2008) Quantitative structure-property relationship for prediction of the lower flammability limit of pure compounds. Energy Fuel 22:3037–3039

    Article  CAS  Google Scholar 

  57. Gharagheizi F (2009) A new group contribution-based model for estimation of lower flammability limit of pure compounds. J Hazard Mater 170:595–604

    Article  CAS  PubMed  Google Scholar 

  58. Cho SG, No KT, Goh EM et al (2005) Optimization of neural networks architecture for impact sensitivity of energetic molecules. Bull Korean Chem Soc 26:399–408

    Article  CAS  Google Scholar 

  59. Wang R, Jiang J, Pan Y et al (2009) Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices. J Hazard Mater 166:155–186

    Article  CAS  PubMed  Google Scholar 

  60. Tetteh J, Metcalfe E, Howells SL (1996) Optimisation of radial basis and backpropagation neural networks for modelling auto-ignition temperature by quantitative structure-property relationships. Chemometr Intell Lab Syst 32:177–191

    Article  CAS  Google Scholar 

  61. Pan Y, Jiang J, Wang R et al (2008) Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices. J Hazard Mater 157:510–517

    Article  CAS  PubMed  Google Scholar 

  62. Liu GS, Yu JG (2005) QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols. Water Res 39:2048–2055

    Article  CAS  PubMed  Google Scholar 

  63. Goudarzi N, Goodarzi M, Araujo MCU et al (2009) QSPR modeling of soil sorption coefficients (Koc) of pesticides using SPA-ANN and SPA-MLR. J Agric Food Chem 57:7153–7158

    Article  CAS  PubMed  Google Scholar 

  64. Luan F, Ma W, Zhang H et al (2005) Prediction of pKa for neutral and basic drugs based on radial basis function neural networks and the heuristic method. Pharm Res 22:1454–1460

    Article  CAS  PubMed  Google Scholar 

  65. CODESSA software. Available at www.semichem.com. Accessed 26 Jan 2014

  66. Habibi-Yangjeh A, Danandeh-Jenagharad M, Nooshyar M (2005) Prediction acidity constant of various benzoic acids and phenols in water using linear and nonlinear QSPR models. Bull Korean Chem Soc 26:2007–2016

    Article  CAS  Google Scholar 

  67. Kauffman GW, Jurs PC (2001) Prediction of surface tension, viscosity and thermal conductivity for common organic solvents using quantitative structure-property relationships. J Chem Inf Comput Sci 41:408–418

    Article  CAS  PubMed  Google Scholar 

  68. Artemenko NV, Baskin II, Palyulin VA et al (2001) Prediction of physical properties of organic compounds using artificial neural networks within the substructure approach. Doklady Chem 381:317–320

    Article  Google Scholar 

  69. Modarresi H, Modarress H, Dearden JC (2007) QSPR model of Henry’s law constant for a diverse set of organic chemicals based on genetic algorithm-radial basis function network approach. Chemosphere 66:2067–2076

    Article  CAS  PubMed  Google Scholar 

  70. Gharagheizi F, Abbasi R, Tirandazi B (2010) Prediction of Henry’s law constant of organic compounds in water from a new group-contribution-based method. Ind Eng Chem Res 49:10149–10152

    Article  CAS  Google Scholar 

  71. ECHA Guidance on information requirements and chemical safety assessment. Chapter R.7b. Endpoint specific guidance, in Guidance for the Implementation of REACH, ECHA, Helsinki, 2012. Available at http://echa.europa.eu/support/guidance-on-reach-and-clp-implementation/consultation-procedure. Accessed 17 Jan 2014

  72. Salina AG, Patlewicz G, Worth AP (2008) A review of QSAR models for skin and eye irritation and corrosion. QSAR Comb Sci 27:49–59

    Article  CAS  Google Scholar 

  73. Golla S, Madihally S, Robinson RL et al (2009) Quantitative structure-property relationships modeling of skin irritation. Toxicol In Vitro 23:176–184

    Article  CAS  PubMed  Google Scholar 

  74. Barratt MD (1996) Quantitative structure-activity relationships (QSARs) for skin corrosivity of organic acids, bases and phenols: principal components and neural networks analysis of extended datasets. Toxicol In Vitro 10:85–94

    Article  CAS  PubMed  Google Scholar 

  75. Barratt MD (1997) QSARs for the eye irritation potential of neutral organic chemicals. Toxicol In Vitro 11:1–8

    Article  CAS  PubMed  Google Scholar 

  76. Patlewicz GY, Rodford RA, Ellis G et al (2000) A QSAR model for the eye irritation of cationic surfactants. Toxicol In Vitro 14:79–84

    Article  CAS  PubMed  Google Scholar 

  77. Patlewicz G, Roberts DW, Uriarte E (2008) A minireview of available skin sensitization (Q)SARs/expert systems. Chem Res Toxicol 21:521–541

    Article  CAS  PubMed  Google Scholar 

  78. Devillers J (2000) A neural network SAR model for allergic contact dermatitis. Toxicol Methods 10:181–193

    Article  CAS  Google Scholar 

  79. Cronin MTD, Basketter DA (1994) Multivariate QSAR analysis of a skin sensitization database. SAR QSAR Environ Res 2:159–179

    Article  CAS  PubMed  Google Scholar 

  80. Golla S, Madihally S, Robinson RL et al (2009) Quantitative structure-property relationship modeling of skin sensitization: a quantitative prediction. Toxicol In Vitro 23:454–465

    Article  CAS  PubMed  Google Scholar 

  81. Benigni R (ed) (2003) Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. CRC Press, Boca Raton

    Google Scholar 

  82. Xu C, Cheng F, Chen L et al (2012) In silico prediction of chemical Ames mutagenicity. J Chem Inf Model 52:2840–2847

    Article  CAS  PubMed  Google Scholar 

  83. Leong MK, Lin S-W, Chen H-B et al (2010) Predicting mutagenicity of aromatic amines by various machine learning approaches. Toxicol Sci 116:498–513

    Article  CAS  PubMed  Google Scholar 

  84. Tsakovska I, Lessigiarska I, Netzeva T et al (2008) A mini review of mammalian toxicity (Q)SAR models. QSAR Comb Sci 27:41–48

    Article  CAS  Google Scholar 

  85. Devillers J (2004) Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modelling. SAR QSAR Environ Res 15:501–510

    Article  CAS  PubMed  Google Scholar 

  86. Funar-Timofei S, Ionescu D, Suzuki T (2010) A tentative quantitative structure-toxicity relationship study of benzodiazepine drugs. Toxicol In Vitro 24:184–200

    Article  CAS  PubMed  Google Scholar 

  87. Kaiser KLE, Niculescu SP (2001) Modeling acute toxicity of chemicals to Daphnia magna: a probabilistic neural network approach. Environ Toxicol Chem 20:420–431

    Article  CAS  PubMed  Google Scholar 

  88. Kahn I, Sild S, Maran U (2007) Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks. J Chem Inf Model 47:2271–2279

    Article  CAS  PubMed  Google Scholar 

  89. Izadiyan P, Fatemi MH, Izadiyan M (2013) Elicitation of the most important structural properties of ionic liquids affecting ecotoxicity in limnic green algae: a QSAR approach. Ecotoxicol Environ Saf 87:42–48

    Article  CAS  PubMed  Google Scholar 

  90. Domine D, Devillers J, Chastrette M et al (1993) Estimating pesticide field half-lives from a backpropagation neural network. SAR QSAR Environ Res 1:211–219

    Article  CAS  PubMed  Google Scholar 

  91. Jing G-H, Li X-L, Zhou Z-M (2011) Quantitative structure-biodegradability relationship study about the aerobic biodegradation of some aromatic compounds. Chin J Struct Chem 30:368–375

    CAS  Google Scholar 

  92. Liu H, Papa E, Walker JD et al (2007) In silico screening of estrogen-like chemicals based on different nonlinear classification models. J Mol Graph Model 26:135–144

    Article  CAS  PubMed  Google Scholar 

  93. Roncaglioni A, Piclin N, Pintore M et al (2008) Binary classification models for endocrine disrupter effects mediated through the estrogen receptor. SAR QSAR Environ Res 19:697–733

    Article  CAS  PubMed  Google Scholar 

  94. Wajima T, Fukumura K, Yano Y et al (2002) Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis. J Pharm Sci 91:2489–2499

    Article  CAS  PubMed  Google Scholar 

  95. Chow H-H, Tolle KM, Roe DJ et al (1997) Application of neural networks to population pharmacokinetic data analysis. J Pharm Sci 86:840–845

    Article  CAS  PubMed  Google Scholar 

  96. Singh KP, Gupta S, Rai P (2013) Predicting acute aqueous toxicity of structurally diverse chemicals in fish using artificial intelligence approaches. Ecotoxicol Environ Saf 95:221–232

    Article  CAS  PubMed  Google Scholar 

  97. Gong Z, Xia B, Zhang R et al (2008) Quantitative structure-activity relationship study on fish toxicity of substituted benzenes. QSAR Comb Sci 27:967–976

    Article  CAS  Google Scholar 

  98. Okey RW, Martis MC (1999) Molecular level studies of the origin of toxicity: determination of key variables and selection of descriptors. Chemosphere 38:1419–1427

    Article  CAS  Google Scholar 

  99. Halberstam NM, Baskin II, Palyulin VA et al (2002) Quantitative structure-conditions-property relationship studies. Neural network modelling of the acid hydrolysis of esters. Mendeleev Commun 12(5):185–186

    Article  CAS  Google Scholar 

  100. Dewhurst I, Renwick AG (2013) Evaluation of the threshold of toxicological concern (TTC)—challenges and approaches. Regul Toxicol Pharmacol 65:168–177

    Article  CAS  PubMed  Google Scholar 

  101. Meng Y, Lin B-L (2008) A feed-forward artificial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate. Ecotoxicol Environ Saf 71:172–186

    Article  CAS  PubMed  Google Scholar 

  102. Fatemi MH, Jalali-Heravi M, Konuze E (2003) Prediction of bioconcentration factor using genetic algorithm and artificial neural network. Anal Chim Acta 486:101–108

    Article  CAS  Google Scholar 

  103. Zhao C, Boriani E, Chana A et al (2008) A new hybrid system of QSAR models for prediction bioconcentration factors (BCF). Chemosphere 73:1701–1707

    Article  CAS  PubMed  Google Scholar 

  104. Devillers J, Pham-Delègue MH, Decourtye A et al (2002) Structure-toxicity modelling of pesticides to honey bees. SAR QSAR Environ Res 13:641–648

    Article  CAS  PubMed  Google Scholar 

  105. Song JS, Moon T, Nam KD et al (2008) Quantitative structure-activity relationship (QSAR) studies for fungicidal activities of thiazoline derivatives against rice blast. Bioorg Med Chem Lett 18:2133–2142

    Article  CAS  PubMed  Google Scholar 

  106. Fjodorova N, Vračko M, Tušar M et al (2010) Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP NN method for regulatory uses. Mol Divers 14:581–594

    Article  CAS  PubMed  Google Scholar 

  107. Singh KP, Gupta S, Rai P (2013) Predicting carcinogenicity of diverse chemicals using probabilistic neural network modelling approaches. Toxicol Appl Pharmacol 272:465–475

    Article  CAS  PubMed  Google Scholar 

  108. Dearden JC (2010) Expert systems for toxicity prediction. In: Cronin MTD, Madden JC (eds) In silico toxicology: principles and applications. Royal Society of Chemistry, London, pp 478–507

    Google Scholar 

  109. Lapenna S, Fuart-Gatnick M, Worth A (2010) Review of QSAR models and software tools for predicting acute and chronic systemic toxicity. Available at http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/doc/EUR_24639_EN.pdf/view. Accessed 25 Jan 2014

  110. Molecular Modeling Pro. Available at http://www.chemsw.com/Software-and-Solutions/Laboratory-Software/Drawing-and-Modeling-Tools/Molecular-Modeling-Pro.aspx. Accessed 25 Jan 2014

  111. Joback KG, Reid RC (1987) Estimation of pure-component properties from group-contributions. Chem Eng Commun 57: 233–243

    Article  CAS  Google Scholar 

  112. ADMET Predictor. http://www.simulations-plus.com. Accessed 28 Jan 2014

  113. ChemSilico. Available at www.chemsilico.com. Accessed 28 Jan 2014

  114. TOPKAT. Available at www.accelrys.com. Accessed 28 Jan 2014

  115. TerraBase. Available at www.terrabase-inc.com. Accessed 28 Jan 2014

  116. Kaiser KLE (2003) Neural networks for effect prediction in environmental health issues using large datasets. QSAR Comb Sci 22:185–190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. T.I. Netzeva and Dr. A.P. Worth for valuable comments on the draft manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Dearden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dearden, J.C., Rowe, P.H. (2015). Use of Artificial Neural Networks in the QSAR Prediction of Physicochemical Properties and Toxicities for REACH Legislation. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 1260. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2239-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2239-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2238-3

  • Online ISBN: 978-1-4939-2239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics