Skip to main content

Predicting Bacterial Community Assemblages Using an Artificial Neural Network Approach

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1260))

Abstract

Microbial communities are found in nearly all environments and play a critical role in defining ecosystem service. Understanding the relationship between these microbial communities and their environment is essential for prediction of community structure, robustness, and response to ecosystem changes. Microbial Assemblage Prediction (MAP) describes microbial community structure as an artificial neural network (ANN) that models the microbial community as functions of environmental parameters and community intra-microbial interactions. MAP models can be used to predict community assemblages over a wide range of possible environmental parameters, extrapolate the results of point observations across spatial scales, and make predictions about how microbial communities may fluctuate as the result of changes in their environment.

The submitted manuscript has been created by UChicago Argonne, LLC, operator of Argonne National Laboratory (“Argonne”). Argonne, a US Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in the said article to reproduce and prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Shtarkman YM et al (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS One 8(7):e67221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Fierer N et al (2008) Short-term temporal variability in airborne bacterial and fungal populations. (Translated from eng). Appl Environ Microbiol 74(1):200–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bowers RM et al (2009) Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. (Translated from eng). Appl Environ Microbiol 75(15):5121–5130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Takai K et al (2001) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67(12):5750–5760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Edwards RA et al (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    Article  PubMed Central  PubMed  Google Scholar 

  8. Teske A, Sorensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2(1):3–18

    Article  CAS  PubMed  Google Scholar 

  9. Baune C, Bottcher ME (2010) Experimental investigation of sulphur isotope partitioning during outgassing of hydrogen sulphide from diluted aqueous solutions and seawater. Isotopes Environ Health Stud 46(4):444–453

    Article  CAS  PubMed  Google Scholar 

  10. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2(8):805–814

    Article  CAS  PubMed  Google Scholar 

  11. Thomas T, Gilbert J, Meyer F (2012) Metagenomics - a guide from sampling to data analysis. Microb Inform Exp 2(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  12. Larsen PE, Gibbons SM, Gilbert JA (2012) Modeling microbial community structure and functional diversity across time and space. FEMS Microbiol Lett 332(2):91–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Larsen P, Hamada Y, Gilbert J (2012) Modeling microbial communities: current, developing, and future technologies for predicting microbial community interaction. J Biotechnol 160(1–2):17–24

    Article  CAS  PubMed  Google Scholar 

  14. Larsen PE, Field D, Gilbert JA (2012) Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods 9(6):621–625

    Article  CAS  PubMed  Google Scholar 

  15. Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Meyer F et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    Article  CAS  Google Scholar 

  17. Smith VA et al (2006) Computational inference of neural information flow networks. PLoS Comput Biol 2(11):e161

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sogin ML et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103(32):12115–12120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Mumby PJ, Clarke KR, Harborne AR (1996) Weighting species abundance estimates for marine resource assessment. Aquat Conserv 6(3):115–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Larsen, P., Dai, Y., Collart, F.R. (2015). Predicting Bacterial Community Assemblages Using an Artificial Neural Network Approach. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 1260. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2239-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2239-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2238-3

  • Online ISBN: 978-1-4939-2239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics