Skip to main content

Using Neural Networks to Understand the Information That Guides Behavior: A Case Study in Visual Navigation

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1260))

Abstract

To behave in a robust and adaptive way, animals must extract task-relevant sensory information efficiently. One way to understand how they achieve this is to explore regularities within the information animals perceive during natural behavior. In this chapter, we describe how we have used artificial neural networks (ANNs) to explore efficiencies in vision and memory that might underpin visually guided route navigation in complex worlds. Specifically, we use three types of neural network to learn the regularities within a series of views encountered during a single route traversal (the training route), in such a way that the networks output the familiarity of novel views presented to them. The problem of navigation is then reframed in terms of a search for familiar views, that is, views similar to those associated with the route. This approach has two major benefits. First, the ANN provides a compact holistic representation of the data and is thus an efficient way to encode a large set of views. Second, as we do not store the training views, we are not limited in the number of training views we use and the agent does not need to decide which views to learn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here Lettvin and colleagues found that parts of the frog’s visual system are tuned to detect small moving objects. Thus the eye is providing information to the frog about where to direct the tongue in the hope of catching a fly. McCulloch and Pitts, authors of this paper, are commonly held up as pioneers of neural network research. J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts, “What the Frog’s Eye Tells the Frog’s Brain,” Proc. IRE 47 (1959) 1940–1951.

  2. 2.

    Lettvin again came up with the concept of a sparse code in the brain where small numbers of individual neurons may be highly selective to concepts such as one’s grandmother. See Quian-Quiroga, R., Fried, I., and Koch, C. (2013) Brain Cells for Grandmother. Scientific American, Feb.

References

  1. Jékely G, Colombelli J, Hausen H et al (2008) Mechanism of phototaxis in marine zooplankton. Nature 456(7220):395–399

    Article  PubMed  Google Scholar 

  2. von Uexküll J (1931) Der Organismus und die Umwelt. In Driesch H, Woltereck H. (Eds.), Das Lebensproblem im Lichte der modernen Forschung, Quelle und Meyer, Leipzig, pp 189–224

    Google Scholar 

  3. Nagel T (1974) What is it like to be a bat? Philos Rev 83:435–450

    Google Scholar 

  4. Shettleworth SJ (2010) Clever animals and killjoy explanations in comparative psychology. Trends Cogn Sci 14(11):477–481. doi:10.1016/j.tics.2010.07.002

    Article  PubMed  Google Scholar 

  5. Wehner R (2009) The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). Myrmecological News 12:85–96

    Google Scholar 

  6. Hölldobler B (1990) The ants. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  7. Collett TS, Graham P, Harris RA et al (2006) Navigational memories in ants and bees: Memory retrieval when selecting and following routes. Adv Study Behav 36:123–172. doi: 10.1016/S0065-3454(06)36003-2

  8. Zeil J, Hofmann MI, Chahl JS (2003) The catchment areas of panoramic snapshots in outdoor scenes. J Opt Soc Am A Opt Image Sci Vis 20:450–469

    Article  PubMed  Google Scholar 

  9. Philippides A, Baddeley B, Cheng K et al (2011) How might ants use panoramic views for route navigation? J Exp Biol 214(3):445–451. doi: 10.1242/Jeb.046755

  10. Wystrach A, Philippides A, Aurejac A et al (2014) Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J Comp Physiol A:1–12

    Google Scholar 

  11. Mangan M, Webb B (2012) Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav Ecol 23(5):944–954. doi: 10.1093/beheco/ars051

  12. Wystrach A, Beugnon G, Cheng K (2012) Ants might use different view-matching strategies on and off the route. J Exp Biol 215(1):44–55. doi:10.1242/Jeb.059584

    Article  PubMed  Google Scholar 

  13. Collett M (2010) How desert ants use a visual landmark for guidance along a habitual route. Proc Natl Acad Sci U S A 107(25):11638–11643. doi:10.1073/pnas.1001401107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Graham P, Cheng K (2009) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19(20):R935–R937

    Article  CAS  PubMed  Google Scholar 

  15. Wystrach A, Graham P (2012) What can we learn from studies of insect navigation? Anim Behav 84(1):13–20. doi:10.1016/j.anbehav.2012.04.017

    Article  Google Scholar 

  16. Baddeley B, Graham P, Philippides A et al (2011) Holistic visual encoding of ant-like routes: navigation without waypoints. Adapt Behav 19(1):3–15. doi:10.1177/1059712310395410

    Article  Google Scholar 

  17. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Computer vision and pattern recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, 2001. IEEE, vol 511. pp I-511–I-518

    Google Scholar 

  18. Freund Y, Schapire R, Abe N (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14(771–780):1612

    Google Scholar 

  19. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  CAS  PubMed  Google Scholar 

  20. Smolensky P (1986) Information processing in dynamical systems: foundations of harmony theory. In Rumelhart D, McClelland J, the PDP Research Group (Eds.). Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations. MIT Press, Cambridge, MA, pp 194–281

    Google Scholar 

  21. Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1771–1800

    Article  PubMed  Google Scholar 

  22. Ackley DH, Hinton GE, Sejnowski TJ (1985) A learning algorithm for Boltzmann machines. Cognit Sci 9(1):147–169

    Article  Google Scholar 

  23. Hinton GE, Sejnowski TJ (1986) Learning and relearning in Boltzmann machines. MIT Press, Cambridge, MA, 1 (282–317):4.2

    Google Scholar 

  24. Hinton G (2010) A practical guide to training restricted Boltzmann machines. Momentum 9(1):926

    Google Scholar 

  25. Baddeley B, Graham P, Philippides A et al (2011) Models of visually guided routes in ants: embodiment simplifies route acquisition. Intelligent robotics and applications. Springer, New York, pp 75–84

    Google Scholar 

  26. Lulham A, Bogacz R, Vogt S et al (2011) An infomax algorithm can perform both familiarity discrimination and feature extraction in a single network. Neural Comput 23(4):909–926

    Article  PubMed  Google Scholar 

  27. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  CAS  PubMed  Google Scholar 

  28. Lee T-W, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11(2):417–441

    Article  CAS  PubMed  Google Scholar 

  29. Amari S-I, Cichocki A, Yang HH (1996) A new learning algorithm for blind signal separation. Adv Neural Inform Process Syst 8:757–763

    Google Scholar 

  30. Muller M, Wehner R (2010) Path integration provides a scaffold for landmark learning in desert ants. Curr Biol 20(15):1368–1371. doi:10.1016/j.cub.2010.06.035

    Article  PubMed  Google Scholar 

  31. Wehner R, Wehner S (1990) Insect navigation—use of maps or ariadnes thread. Ethol Ecol Evol 2(1):27–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Philippides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Philippides, A., Graham, P., Baddeley, B., Husbands, P. (2015). Using Neural Networks to Understand the Information That Guides Behavior: A Case Study in Visual Navigation. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 1260. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2239-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2239-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2238-3

  • Online ISBN: 978-1-4939-2239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics