Skip to main content

Modulation of Grasping Force in Prosthetic Hands Using Neural Network-Based Predictive Control

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1260))

Abstract

This chapter describes the implementation of a neural network-based predictive control system for driving a prosthetic hand. Nonlinearities associated with the electromechanical aspects of prosthetic devices present great challenges for precise control of this type of device. Model-based controllers may overcome this issue. Moreover, given the complexity of these kinds of electromechanical systems, neural network-based modeling arises as a good fit for modeling the fingers’ dynamics. The results of simulations mimicking potential situations encountered during activities of daily living demonstrate the feasibility of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith RJ, Tenore F, Huberdeau D et al (2008) Continuous decoding of finger position from surface EMG signals for the control of powered prostheses. 30th Annual international conference of the IEEE Engineering in Medicine and Biology Society, 20–25 Aug 2008, pp 197–200

    Google Scholar 

  2. Matrone G, Cipriani C, Secco EL et al (2009) Bio-inspired controller for a dexterous prosthetic hand based on principal components analysis. Annual international conference of the IEEE Engineering in Medicine and Biology Society, 3–6 Sep 2009, pp 5022–5025

    Google Scholar 

  3. Jingdong Z, Li J, Shicai S et al (2006) A five-fingered underactuated prosthetic hand system. Proceedings of the IEEE international conference on mechatronics and automation, 25–28 Jun 2006, pp 1453–1458

    Google Scholar 

  4. Jingdong Z, Zongwu X, Li J et al (2005) Levenberg-Marquardt based neural network control for a five-fingered prosthetic hand. Proceedings of the IEEE international conference on robotics and automation, 18–22 Apr 2005, pp 4482–4487

    Google Scholar 

  5. Zajdlik J (2006) The preliminary design and motion control of a five-fingered prosthetic hand. Proceedings of the international conference on intelligent engineering systems, 0-0 0, pp 202–206

    Google Scholar 

  6. Dapeng Y, Jingdong Z, Yikun G et al (2009) EMG pattern recognition and grasping force estimation: improvement to the myocontrol of multi-DOF prosthetic hands. IEEE/RSJ international conference on intelligent robots and systems, 10–15 Oct 2009, pp 516–521

    Google Scholar 

  7. Tsujiuchi N, Takayuki K, Yoneda M (2004) Manipulation of a robot by EMG signals using linear multiple regression model. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, vol 1992, 28 Sep–2 Oct 2004, pp 1991–1996

    Google Scholar 

  8. Jingdong Z, Zongwu X, Li J et al (2006) EMG control for a five-fingered underactuated prosthetic hand based on wavelet transform and sample entropy. International conference on intelligent robots and systems, 9–15 Oct 2006, pp 3215–3220

    Google Scholar 

  9. Weir RF, Ajiboye AB (2003) A multifunction prosthesis controller based on fuzzy-logic techniques. Proceedings of the 25th annual international conference of the IEEE Engineering in Medicine and Biology Society, vol 1672, 17–21 Sep 2003, pp 1678–1681

    Google Scholar 

  10. Pylatiuk C, Mounier S, Kargov A et al (2004) Progress in the development of a multifunctional hand prosthesis. 26th Annual international conference of the IEEE Engineering in Medicine and Biology Society, 1–5 Sep 2004, pp 4260–4263

    Google Scholar 

  11. Cipriani C, Antfolk C, Balkenius C et al (2009) A novel concept for a prosthetic hand with a bidirectional interface: a feasibility study. IEEE Trans Biomed Eng 56(11):2739–2743. doi:10.1109/TBME.2009.2031242

    Article  PubMed  Google Scholar 

  12. Panarese A, Edin BB, Vecchi F et al (2009) Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand. IEEE Trans Neural Syst Rehabil Eng 17(6):560–567. doi:10.1109/TNSRE.2009.2021689

    Article  PubMed  Google Scholar 

  13. Rodriguez-Cheu LE, Casals A (2006) Sensing and control of a prosthetic hand with myoelectric feedback. The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, 20–22 Feb 2006, pp 607–612

    Google Scholar 

  14. Dhillon GS, Horch KW (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13(4):468–472. doi:10.1109/TNSRE.2005.856072

    Article  PubMed  Google Scholar 

  15. Lundborg G, Rosén B (2001) Sensory substitution in prosthetics. Hand Clin 17(3):481–488

    CAS  PubMed  Google Scholar 

  16. Mangieri E, Ahmadi A, Maharatna K et al (2008) A novel analogue circuit for controlling prosthetic hands. IEEE biomedical circuits and systems conference, 20–22 Nov 2008, pp 81–84

    Google Scholar 

  17. Wettels N, Parnandi AR, Moon JH et al (2009) Grip control using biomimetic tactile sensing systems. IEEE/ASME Trans Mechatron 14(6):718–723

    Article  Google Scholar 

  18. Tura A, Lamberti C, Davalli A et al (1998) Experimental development of a sensory control system for an upper limb myoelectric prosthesis with cosmetic covering. J Rehabil Res Dev 35(1):14–26

    CAS  PubMed  Google Scholar 

  19. Engeberg ED, Meek SG (2008) Adaptive object slip prevention for prosthetic hands through proportional-derivative shear force feedback. IEEE/RSJ International conference on intelligent robots and systems, 22–26 Sep 2008, pp 1940–1945

    Google Scholar 

  20. Engeberg ED, Meek S (2008) Improved grasp force sensitivity for prosthetic hands through force-derivative feedback. IEEE Trans Biomed Eng 55(2):817–821

    Article  PubMed  Google Scholar 

  21. Engeberg ED, Meek SG, Minor MA (2008) Hybrid force-velocity sliding mode control of a prosthetic hand. IEEE Trans Biomed Eng 55(5):1572–1581

    Article  PubMed  Google Scholar 

  22. Zhao DW, Jiang L, Huang H et al (2006) Development of a multi-DOF anthropomorphic prosthetic hand. International conference on robotics and biomimetics, 17–20 Dec 2006, pp 878–883

    Google Scholar 

  23. Cipriani C, Zaccone F, Stellin G et al (2006) Closed-loop controller for a bio-inspired multi-fingered underactuated prosthesis. Proceedings of the IEEE international conference on robotics and automation, 15–19 May 2006, pp 2111–2116

    Google Scholar 

  24. Carrozza MC, Cappiello G, Micera S et al (2006) Design of a cybernetic hand for perception and action. Biol Cybern 95(6):629–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Light CM, Chappell PH, Hudgins B et al (2002) Intelligent multifunction myoelectric control of hand prostheses. J Med Eng Technol 26(4):139–146

    Article  CAS  PubMed  Google Scholar 

  26. Connolly C (2008) Prosthetic hands from Touch Bionics. Ind Rob 35(4):290–293

    Article  Google Scholar 

  27. Engeberg ED, Meek SG (2013) Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects. IEEE/ASME Trans Mechatron 18(1):376–385. doi:10.1109/TMECH.2011.2179061

    Article  Google Scholar 

  28. Andrecioli R, Engeberg ED (2013) Adaptive sliding manifold slope via grasped object stiffness detection with a prosthetic hand. Mechatronics 23(8):1171–1179

    Article  Google Scholar 

  29. Peerdeman B, Fabrizi U, Palli G et al (2012) Development of prosthesis grasp control systems on a robotic testbed. 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, 24–27 Jun 2012, pp 1110–1115

    Google Scholar 

  30. Luo Z-z, Wang F, Wang R-c (2006) Study of multi-freedom myoelectric prostheses with tactile sense. 27th Annual international conference of the Engineering in Medicine and Biology Society, 17–18 Jan 2006, pp 3004–3007

    Google Scholar 

  31. Cipriani C, Zaccone F, Micera S et al (2008) On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction. IEEE Transactions on Robotics 24(1):170–184. doi:10.1109/TRO.2007.910708

    Article  Google Scholar 

  32. Cipriani C, Controzzi M, Vecchi F et al (2008) Embedded hardware architecture based on microcontrollers for the action and perception of a transradial prosthesis. 2nd IEEE RAS & EMBS International conference on biomedical robotics and biomechatronics, 19–22 Oct 2008, pp 848–853

    Google Scholar 

  33. Rodriguez-Cheu LE, Gonzalez D, Rodriguez M () Result of a perceptual feedback of the grasping forces to prosthetic hand users. 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, 19–22 Oct 2008, pp 901–906

    Google Scholar 

  34. Pasluosta CF (2010) Nonlinear control strategy for a cost effective myoelectric prosthetic hand. Dissertation, Lousiana Tech University, Ruston, Lousiana, USA

    Google Scholar 

  35. Pasluosta CF, Chiu AWL (2012) Evaluation of a neural network-based control strategy for a cost-effective externally-powered prosthesis. Assist Technol 24(3):196–208

    Article  PubMed  Google Scholar 

  36. Norgaard M, Ravn O, Poulsen NK, Hansen LK (2000) Neural networks for modelling and control of dynamic systems: a practitioner’s handbook. Advanced textbooks in control and signal processing. Springer, Great Britain

    Book  Google Scholar 

  37. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  38. Dahunsi OA, Pedro JO, Nyandoro OT (2009) Neural network-based model predictive control of a servo-hydraulic vehicle suspension system. AFRICON ‘09, 23–25 Sep 2009, pp 1–6

    Google Scholar 

  39. Haichen Y, Zhijun Z (2006) Predictive control based on neural networks of the chemical process. Chinese Control Conference, 7–11 Aug 2006, pp 1143–1147

    Google Scholar 

  40. Bandyopadhyay B (2005) Neural network based predictive controller (NNPC): an investigation into its application in Textiles. International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce, 28–30 Nov 2005, pp 963–967

    Google Scholar 

  41. Jianbin H, Shaohua T, Vandewalle J (1993) One step ahead predictive control of nonlinear systems by neural networks. Proceedings of international joint conference on neural networks, vol 2763, 25–29 Oct 1993, pp 2761–2764

    Google Scholar 

  42. Soloway D, Haley P (2001) Aircraft reconfiguration using neural generalized predictive control. Proceedings of the 2001 American Control Conference, 2001, vol 2924, pp 2924–2929

    Google Scholar 

  43. Qiang S, Fang L, Findlay RD (2006) Generalized predictive control for a pneumatic system based on an optimized ARMAX model with an artificial neural network. International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce, Nov 28–Dec 1 2006, pp 223–223

    Google Scholar 

  44. Haley P, Soloway D, Gold B (1999) Real-time adaptive control using neural generalized predictive control. Proceedings of the American Control Conference, vol 4276, 1999, pp 4278–4282

    Google Scholar 

  45. Noriega JR, Wang H (1998) A direct adaptive neural-network control for unknown nonlinear systems and its application. IEEE Trans Neural Netw 9(1):27–34

    Article  CAS  PubMed  Google Scholar 

  46. Norgaard M, Ravn O, Poulsen NK (2001) NNSYSID and NNCTRL tools for system identification and control with neural networks. Computing and Control Engineering Journal 12(1):29–36

    Article  Google Scholar 

  47. Gunji D, Mizoguchi Y, Teshigawara S et al (2008) Grasping force control of multi-fingered robot hand based on slip detection using tactile sensor. IEEE international conference on robotics and automation, 19–23 May 2008, pp 2605–2610

    Google Scholar 

  48. Schuurmans J, Van Der Linde RQ, Plettenburg DH et al (2007) Grasp force optimization in the design of an underactuated robotic hand. IEEE 10th international conference on rehabilitation robotics, 13–15 Jun 2007, pp 776–782

    Google Scholar 

  49. Kamikawa Y, Maeno T (2008) Underactuated five-finger prosthetic hand inspired by grasping force distribution of humans. IEEE/RSJ international conference on intelligent robots and systems, 22–26 Sep 2008, pp 717–722

    Google Scholar 

Download references

Acknowledgement

This work was supported by the NIH NCRR INBRE grant P20RR016456, and the Louisiana Board of Regents RCS LEQSF(2007-10)-RD-A-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W. L. Chiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pasluosta, C.F., Chiu, A.W.L. (2015). Modulation of Grasping Force in Prosthetic Hands Using Neural Network-Based Predictive Control. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 1260. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2239-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2239-0_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2238-3

  • Online ISBN: 978-1-4939-2239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics