Skip to main content

Efficient Cryopreservation of Human Pluripotent Stem Cells by Surface-Based Vitrification

  • Protocol
  • First Online:
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1257))

Abstract

Efficient cryopreservation of human stem cells is crucial for guaranteeing a permanent supply of high-quality cell material for drug discovery or regenerative medicine. Conventionally used protocols usually employing slow freezing rates, however, result in low recovery rates for human pluripotent stem cells due to their complex colony structure. In this chapter, a surface-based vitrification protocol for pluripotent stem cells is presented based on a procedure for human embryonic stem cells developed by Beier et al. (Cryobiology 63:175–185, 2011). This simple and highly efficient cryopreservation method allows cryopreservation of large numbers of ready-to-use adherent cells that maintain pluripotency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  2. Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19:193–204

    Article  CAS  Google Scholar 

  3. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179

    Article  CAS  Google Scholar 

  4. Lerou PH, Daley GQ (2005) Therapeutic potential of embryonic stem cells. Blood Rev 19:321–331

    Article  Google Scholar 

  5. Strulovici Y, Leopold PL, O’Connor TP, Pergolizzi RG, Crystal RG (2007) Human embryonic stem cells and gene therapy. Mol Ther 15:850–866

    CAS  Google Scholar 

  6. Schulz JC, Stumpf PS, Katsen-Globa A, Sachinidis A, Hescheler J, Zimmermann H (2012) First steps towards the successful surface-based cultivation of human embryonic stem cells in hanging drop systems. Eng Life Sci 12:584–587

    Article  CAS  Google Scholar 

  7. Katsen-Globa A, Meiser I, Petrenko YA, Ivanov RV, Lozinsky VI, Zimmermann H, Petrenko AY (2014) Towards ready-to-use 3-D scaffolds for regenerative medicine: adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate-gelatin cryogel scaffolds. J Mater Sci Mater Med 25:857–871

    Article  CAS  Google Scholar 

  8. Acker JP, Larese A, Yang H, Petrenko A, McGann LE (1999) Intracellular ice formation is affected by cell interactions. Cryobiology 38:363–371

    Article  CAS  Google Scholar 

  9. Heng BC, Ye CP, Liu H, Toh WS, Rufaihah AJ, Yang Z et al (2006) Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. J Biomed Sci 13:433–445

    Article  CAS  Google Scholar 

  10. Liu JC, Guan X, Ryan JA, Rivera AG, Mock C, Agrawal V et al (2013) High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell 13:483–491

    Article  CAS  Google Scholar 

  11. Dumitru R, Gama V, Fragan BM, Bower JJ, Swahari V, Pevny LH, Deshmukh M (2012) Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. Mol Cell 46:573–583

    Article  CAS  Google Scholar 

  12. Wowk B (2010) Thermodynamic aspects of vitrification. Cryobiology 60:11–22

    Article  CAS  Google Scholar 

  13. Richards M, Fong CY, Tan S, Chan WK, Bongso A (2004) An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22:779–789

    Article  Google Scholar 

  14. Beier AF, Schulz JC, Dörr D, Katsen-Globa A, Sachinidis A, Hescheler J, Zimmermann H (2011) Effective surface-based cryopreservation of human embryonic stem cells by vitrification. Cryobiology 63:175–185

    Article  CAS  Google Scholar 

  15. Richards M, Tan SP, Tan JH, Chan WK, Bongso A (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22:51–64

    Article  CAS  Google Scholar 

  16. Sathananthan H, Pera M, Trounson A (2002) The fine structure of human embryonic stem cells. Reprod Biomed Online 4:56–61

    Article  Google Scholar 

  17. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  CAS  Google Scholar 

  18. Narumiya S, Ishizaki T, Uehata M (2000) Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 325:273–284

    Article  CAS  Google Scholar 

  19. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  CAS  Google Scholar 

  20. Li XY, Meng GL, Krawetz R, Liu SY, Rancourt DE (2008) The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev 17:1079–1085

    Article  CAS  Google Scholar 

  21. Kim SJ, Park JH, Lee JE, Kim JM, Lee JB, Moon SY et al (2004) Effects of type IV collagen and laminin on the cryopreservation of human embryonic stem cells. Stem Cells 22:950–961

    Article  CAS  Google Scholar 

  22. Lee JY, Lee JE, Kim DK, Yoon TK, Chung HM, Lee DR (2010) High concentration of synthetic serum, stepwise equilibration and slow cooling as an efficient technique for large-scale cryopreservation of human embryonic stem cells. Fertil Steril 93:976–985

    Article  CAS  Google Scholar 

  23. Chen SU, Lien YR, Chao K, Lu HF, Ho HN, Yang YS (2000) Cryopreservation of mature human oocytes by vitrification with ethylene glycol in straws. Fertil Steril 74:804–808

    Article  CAS  Google Scholar 

  24. Reubinoff BE, Pera MF, Vajta G, Trounson AO (2001) Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod 16:2187–2194

    Article  CAS  Google Scholar 

  25. Hornung J, Muller T, Fuhr G (1996) Cryopreservation of anchorage-dependent mammalian cells fixed to structured glass and silicon substrates. Cryobiology 33:260–270

    Article  CAS  Google Scholar 

  26. Beier AF, Schulz JC, Zimmermann H (2013) Vitrification with a twist: towards a sterile, serum-free surface-based vitrification of hESCs. Cryobiology 66:8–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work with human embryonic stem cells was permitted by the Robert Koch Institute (18 and 44 permission) and carried out according to German law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Zimmermann Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Neubauer, J.C., Beier, A.F., Geijsen, N., Zimmermann, H. (2015). Efficient Cryopreservation of Human Pluripotent Stem Cells by Surface-Based Vitrification. In: Wolkers, W., Oldenhof, H. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology, vol 1257. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2193-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2193-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2192-8

  • Online ISBN: 978-1-4939-2193-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics