Skip to main content

Capacitating Epistasis—Detection and Role in the Genetic Architecture of Complex Traits

  • Protocol
  • First Online:
Epistasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1253))

Abstract

Here, we discuss the potential role of capacitating epistasis in the genetic architecture of complex traits. Two alternative methods for identifying such gene-gene interactions in genetic association studies—mapping of variance controlling loci and the variance plane ratio (VPR) method—are introduced. An overview of the theoretical foundation of the methods is presented together with a discussion on their implementation and available software for performing these analyses. We conclude by highlighting a few examples of capacitating epistasis described in the literature and its potential impacts on the genetics of complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersson L, Georges M (2004) Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet 5:202–212

    Article  CAS  PubMed  Google Scholar 

  2. Mackay TF, Lyman RF (2005) Drosophila bristles and the nature of quantitative genetic variation. Philos Trans R Soc B 360:1513–1527

    Article  CAS  Google Scholar 

  3. Carlborg Ö, Jacobsson L, Ahgren P et al (2006) Epistasis and the release of genetic variation during long-term selection. Nat Genet 38:418–420

    Article  CAS  PubMed  Google Scholar 

  4. Martin S, Söllner C, Charoensawan V et al (2010) Construction of a large extracellular protein interaction network and its resolution by spatiotemporal expression profiling. Mol Cell Proteomics 9:2654–2665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Yachie N, Saito R, Sugiyama N et al (2011) Integrative features of the yeast phosphoproteome and protein–protein interaction map. PLoS Comput Biol 7:e1001064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gitter A, Siegfried Z, Klutstein M et al (2009) Backup in gene regulatory networks explains differences between binding and knockout results. Mol Syst Biol 5:276

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  CAS  PubMed  Google Scholar 

  8. Dworkin I, Palsson A, Birdsall K et al (2003) Evidence that Egfr contributes to cryptic genetic variation for photoreceptor determination in natural populations of Drosophila melanogaster. Curr Biol 13:1888–1893

    Article  CAS  PubMed  Google Scholar 

  9. Sangster T, Salathia N, Lee HN et al (2008) HSP90-buffered genetic variation is common in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105:2969–2974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hill WG, Zhang X-S (2004) Effects on phenotypic variability of directional selection arising through genetic differences in residual variability. Genet Res 83:121–132

    Article  CAS  PubMed  Google Scholar 

  11. Struchalin MV, Dehghan A, Witteman JC et al (2010) Variance heterogeneity analysis for detection of potentially interacting genetic loci: method and its limitations. BMC Genet 11:92

    Article  PubMed Central  PubMed  Google Scholar 

  12. Paré G, Cook NR, Ridker PM et al (2010) On the use of variance per genotype as a tool to identify quantitative trait interaction effects: a report from the Women’s Genome Health Study. PLoS Genet 6:e1000981

    Article  PubMed Central  PubMed  Google Scholar 

  13. Jimenez-Gomez JM, Corwin JA, Joseph B et al (2011) Genomic analysis of QTLs and genes altering natural variation in stochastic noise. PLoS Genet 7:e1002295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rönnegård L, Valdar W (2011) Detecting major genetic loci controlling phenotypic variability in experimental crosses. Genetics 188:435–447

    Article  PubMed Central  PubMed  Google Scholar 

  15. Shen X, Pettersson M, Rönnegård L et al (2012) Inheritance beyond plain heritability: variance-controlling genes in Arabidopsis thaliana. PLoS Genet 8:e1002839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hulse AM, Cai JJ (2012) Genetic variants contribute to gene expression variability in humans. Genetics 193:95–108

    Article  PubMed  Google Scholar 

  17. Yang J, Loos RJF, Powell JE et al (2012) FTO genotype is associated with phenotypic variability of body mass index. Nature 490:267–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Nelson RM, Pettersson ME, Li X et al (2013) Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis. PLoS One 8:e79507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Shen X, Carlborg Ö (2013) Beware of risk for increased false positive rates in genome-wide association studies for phenotypic variability. Front Genet 4:93

    PubMed Central  PubMed  Google Scholar 

  20. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0

    Google Scholar 

  21. Shen X (2011) vGWAS: Variance Genome-wide Association. R package version 2011.11.01/r7. http://R-Forge.R-project.org/projects/vgwas/

  22. Struchalin M (2011) VariABEL: testing of genotypic variance heterogeneity to detect potentially interacting SNP. R package version 0.9-0. http://CRAN.R-project.org/package=VariABEL

  23. Nelson RM, Nettelblad C, Pettersson ME et al (2013) MAPfastR: quantitative trait loci mapping in outbred line crosses. G3 3:2147–2149

    Article  PubMed Central  PubMed  Google Scholar 

  24. Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  CAS  PubMed  Google Scholar 

  25. Carlborg Ö, Kerje S, Schütz K et al (2003) A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res 13:413–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Carlborg Ö, Hocking PM, Burt DW et al (2004) Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth. Genet Res 83:197–209

    Article  CAS  PubMed  Google Scholar 

  27. Gjuvsland AB, Hayes BJ, Omholt SW et al (2007) Statistical epistasis is a generic feature of gene regulatory networks. Genetics 175:411–420

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hallgrímsdóttir IB, Yuster DS (2008) A complete classification of epistatic two-locus models. BMC Genet 9:17

    Article  PubMed Central  PubMed  Google Scholar 

  29. Pettersson M, Besnier F, Siegel PB et al (2011) Replication and explorations of high-order epistasis using a large advanced intercross line pedigree. PLoS Genet 7:e1002180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Dunnington E, Siegel PB (1996) Long-term divergent selection for eight-week body weight in white Plymouth rock chicken. Poult Sci 75:1168–1179

    Article  CAS  PubMed  Google Scholar 

  31. Eitan Y, Soller M (2004) In: Wasser S (ed) Evolutionary theory and processes: modern horizons. Papers in honour of Eviatar Nevo. Kluwer Academic, Dordrecht, pp 153–176

    Google Scholar 

  32. LeRouzic A, Carlborg O (2008) Evolutionary potential of hidden genetic variation. Trends Ecol Evol 23:33–37 (Personal edition)

    Article  Google Scholar 

  33. LeRouzic A, Siegel PB, Carlborg O (2007) Phenotypic evolution from genetic polymorphisms in a radial network architecture. BMC Biol 5:50

    Article  Google Scholar 

  34. Pettersson M, Nelson R, Carlborg Ö (2012) Selection on variance-controlling genes: adaptability or stability. Evolution 66:3945–3949

    Article  PubMed  Google Scholar 

  35. Johansson AM, Pettersson ME, Siegel PB et al (2010) Genome-wide effects of long-term divergent selection. PLoS Genet 6:e1001188

    Article  PubMed Central  PubMed  Google Scholar 

  36. Shen X, Forsberg S, Pettersson M, Sheng Z, Carlborg Ö (2013) Mutant epigenetic machinery mediates climate adaptation in Arabidopsis thaliana. arXiv:1310.4522 [q-bio.PE]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Örjan Carlborg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pettersson, M.E., Carlborg, Ö. (2015). Capacitating Epistasis—Detection and Role in the Genetic Architecture of Complex Traits. In: Moore, J., Williams, S. (eds) Epistasis. Methods in Molecular Biology, vol 1253. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2155-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2155-3_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2154-6

  • Online ISBN: 978-1-4939-2155-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics