Skip to main content

In Silico Control of Biomolecular Processes

  • Protocol
  • First Online:
Computational Methods in Synthetic Biology

Abstract

By implementing an external feedback loop one can tightly control the expression of a gene over many cell generations with quantitative accuracy. Controlling precisely the level of a protein of interest will be useful to probe quantitatively the dynamical properties of cellular processes and to drive complex, synthetically-engineered networks. In this chapter we describe a platform for real-time closed-loop control of gene expression in yeast that integrates microscopy for monitoring gene expression at the cell level, microfluidics to manipulate the cells environment, and original software for automated imaging, quantification, and model predictive control. By using an endogenous osmo-stress responsive promoter and playing with the osmolarity of the cells environment, we demonstrate that long-term control can indeed be achieved for both time-constant and time-varying target profiles, at the population level, and even at the single-cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297:1018–23

    Article  CAS  PubMed  Google Scholar 

  2. Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci U S A 102:3581–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Cai L, Dalal CK, Elowitz MB (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455:485–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Celani A, Vergassola M (2010) Bacterial strategies for chemotaxis response. Proc Natl Acad Sci U S A 107:1391–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Baumgartner BL, Bennett MR, Ferry M et al (2011) Antagonistic gene transcripts regulate adaptation to new growth environments. Proc Natl Acad Sci U S A 108:21087–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. O’Shaughnessy EC, Palani S, Collins JJ et al (2011) Tunable signal processing in synthetic MAP kinase cascades. Cell 144:119–31

    Article  PubMed Central  PubMed  Google Scholar 

  7. de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3:735–40

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Miermont A, Uhlendorf J, McClean M et al (2011) The dynamical systems properties of the HOG signaling cascade. J Signal Transduct 2011:930940

    Article  PubMed Central  PubMed  Google Scholar 

  10. Muzzey D, Gómez-Uribe C, Mettetal JT et al (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138:160–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yi TM, Huang Y, Simon MI et al (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A 97:4649–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Van Voorst F, Neves L, Oliveira R et al (2005) A member of the sugar transporter family, Stl1p is the glycerol/H + symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076

    Article  PubMed Central  PubMed  Google Scholar 

  13. O’Rourke SM, Herskowitz I (2004) Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15:532–542

    Article  PubMed Central  PubMed  Google Scholar 

  14. Uhlendorf J, Miermont A, Delaveau T et al (2012) Long-term model predictive control of gene expression at the population and single-cell levels. Proc Natl Acad Sci U S A 35:14271–14276

    Article  Google Scholar 

  15. Klipp E, Nordlander B, Krüger R et al (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–82

    Article  CAS  PubMed  Google Scholar 

  16. Hao N, Behar M, Parnell SC et al (2007) A systems-biology analysis of feedback inhibition in the Sho1 osmotic-stress-response pathway. Curr Biol 17:659–67

    Article  CAS  PubMed  Google Scholar 

  17. Mettetal JT, Muzzey D, Gómez-Uribe C et al (2008) The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319:482–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zi Z, Liebermeister W, Klipp E (2010) A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS One 5:e9522

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zechner C, Ruess J, Krenn P et al (2012) Moment-based inference predicts bimodality in transient gene expression. Proc Natl Acad Sci U S A 109:8340–8345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Uhlendorf J, Bottani S, Fages F, et al (2011) Towards real-time control of gene expression: controlling the hog signaling cascade. Pac Symp Biocomput 338–349

    Google Scholar 

  21. Menolascina F, di Bernardo M, di Bernardo D (2011) Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks. Automatica 47:1265–1270

    Article  Google Scholar 

  22. Toettcher JE, Gong D, Lim WA et al (2011) Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 8:837–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Milias-Argeitis A, Summers S, Stewart-Ornstein J et al (2011) In silico feedback for in vivo regulation of a gene expression circuit. Nat Biotechnol 29:1114–1116

    Article  CAS  PubMed  Google Scholar 

  24. Chen S, Harrigan P, Heineike B et al (2013) Building robust functionality in synthetic circuits using engineered feedback regulation. Curr Opin Biotechnol 24:790–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Agence Nationale de la Recherche (under the references DiSiP-ANR-07-JCJC-0001 and ICEBERG-ANR-10-BINF-06-01), of the Région Ile de France (C’Nano-ModEnv), of the Action d’Envergure ColAge from INRIA/INSERM (Institut Nationale de la Santé et de la Recherche Médicale), of the MechanoBiology Institute, and of the Laboratoire International Associé CAFS (Cell Adhesion France-Singapour).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pascal Hersen or Gregory Batt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Uhlendorf, J. et al. (2015). In Silico Control of Biomolecular Processes. In: Marchisio, M. (eds) Computational Methods in Synthetic Biology. Methods in Molecular Biology, vol 1244. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1878-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1878-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1877-5

  • Online ISBN: 978-1-4939-1878-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics