Skip to main content

Microfluidic Model of Angiogenic Sprouting

  • Protocol
  • First Online:
Vascular Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1214))

Abstract

Microfluidic systems have emerged as an important technology for modeling cellular microenvironments in vitro. These systems enable unprecedented levels of control of chemical gradients, fluid flow, and localized 3-D extracellular matrices (ECM), all of which can be integrated to provide a physiologically relevant context for studying complex cellular processes such as angiogenesis. Here, we describe the design and use of microfluidic systems for reproducing the dynamic events of vascular morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Inamdar NK, Borenstein JT (2011) Microfluidic cell culture models for tissue engineering. Curr Opin Biotechnol 22:681–689

    Article  CAS  PubMed  Google Scholar 

  2. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  3. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

  4. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  PubMed  Google Scholar 

  5. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  PubMed  Google Scholar 

  6. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411

    Article  CAS  PubMed  Google Scholar 

  7. Young EW, Simmons CA (2010) Macro- and microscale fluid flow systems for endothelial cell biology. Lab Chip 10:143–160

    Article  CAS  PubMed  Google Scholar 

  8. Kim L, Toh YC, Voldman J, Yu H (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7:681–694

    Article  CAS  PubMed  Google Scholar 

  9. Walker GM, Zeringue HC, Beebe DJ (2004) Microenvironment design considerations for cellular scale studies. Lab Chip 4:91–97

    Article  CAS  PubMed  Google Scholar 

  10. Mosadegh B, Huang C, Park JW, Shin HS, Chung BG, Hwang SK et al (2007) Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23:10910–10912

    Article  CAS  PubMed  Google Scholar 

  11. Shamloo A, Heilshorn SC (2010) Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10:3061–3068

    Article  CAS  PubMed  Google Scholar 

  12. Young EW, Wheeler AR, Simmons CA (2007) Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab Chip 7:1759–1766

    Article  CAS  PubMed  Google Scholar 

  13. Song JW, Gu W, Futai N, Warner KA, Nor JE, Takayama S (2005) Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal Chem 77:3993–3999

    Article  CAS  PubMed  Google Scholar 

  14. Andersson H, Berg A (2004) Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip 4:98–103

    Article  CAS  PubMed  Google Scholar 

  15. Song JW, Bazou D, Munn LL (2012) Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr Biol (Camb) 4:857–862

    Article  CAS  Google Scholar 

  16. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci U S A 108:15342–15347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Song JW, Daubriac J, Tse JM, Bazou D, Munn LL (2012) RhoA mediates flow-induced endothelial sprouting in a 3-D tissue analogue of angiogenesis. Lab Chip 12:5000–5006

    Article  CAS  PubMed  Google Scholar 

  18. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protocols 5:491–502

    Article  CAS  Google Scholar 

  19. Morgan JP, Delnero PF, Zheng Y, Verbridge SS, Chen J, Craven M et al (2013) Formation of microvascular networks in vitro. Nat Protocols 8:1820–1836

    Article  CAS  Google Scholar 

  20. Walker GM, Beebe DJ (2002) A passive pumping method for microfluidic devices. Lab Chip 2:131–134

    Article  CAS  PubMed  Google Scholar 

  21. Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28:223–232

    Article  CAS  PubMed  Google Scholar 

  22. Huh D, Mills K, Zhu X, Burns MA, Thouless M, Takayama S (2007) Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat Mater 6:424–428

    Article  CAS  PubMed  Google Scholar 

  23. Chaw KC, Manimaran M, Tay FE, Swaminathan S (2007) Matrigel coated polydimethylsiloxane based microfluidic devices for studying metastatic and non-metastatic cancer cell invasion and migration. Biomed Microdevices 9:597–602

    Article  CAS  PubMed  Google Scholar 

  24. Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim HY et al (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9:1740–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vickerman V, Blundo J, Chung S, Kamm R (2008) Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8:1468–1477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Atherton A, Born GV (1973) Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J Physiol 233:157–165

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Munn LL (2003) Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discov Today 8:396–403

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We acknowledge support from grants from the National Institutes of Health: R01CA149285 (LLM) and T32CA073479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance L. Munn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Song, J.W., Bazou, D., Munn, L.L. (2015). Microfluidic Model of Angiogenic Sprouting. In: Ribatti, D. (eds) Vascular Morphogenesis. Methods in Molecular Biology, vol 1214. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1462-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1462-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1461-6

  • Online ISBN: 978-1-4939-1462-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics