Skip to main content

From Pharmacogenomics and Systems Biology to Personalized Care: A Framework of Systems and Dynamical Medicine

  • Protocol
  • First Online:
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1175))

Abstract

With the integration of pharmacogenomics and systems biology, personalized medicine would be possible by switching the gear from the reductionism-based and disease-focused medical system toward a dynamical systems-based and human-centric health care. Comprehensive models are needed to represent the properties of complex adaptive systems (CASs) to elucidate the complexity in health and diseases, including the features of emergence, nonlinearity, self-organization, and adaptation. As all diseases have the dynamical elements, nonlinear time-series analyses are necessary to characterize the system dynamics at various levels to elucidate the physiological and pathological rhythms, oscillations, and feedback loops. Such analyses can help detect patterns across multiple scales in both the spatial (e.g., from molecules to cells, from organisms to psychosocial environments) and the temporal (e.g., from nanoseconds to hours, from years to decades) dimensions. Based on such understanding, systems and dynamical medicine can be developed with the emphasis on the whole systems that change over time to address the nonlinearity and interconnectivity toward a holistic and proactive care. Accurate and robust biomarkers with predictive values can be discovered to reflect the systemic conditions and disease stages. Network and dynamical models may support individualized risk analysis, presymptomatic diagnosis, precise prognosis, and integrative interventions. Systems and dynamical medicine may provide the root for the achievement of predictive, preventive, personalized, and participatory (P4) medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yan Q (2010) Translational bioinformatics and systems biology approaches for personalized medicine. Methods Mol Biol 662:167–178

    Article  CAS  PubMed  Google Scholar 

  2. Yan Q (2005) Pharmacogenomics and systems biology of membrane transporters. Mol Biotechnol 29:75–88

    Article  CAS  PubMed  Google Scholar 

  3. Yan Q (2011) Translation of psychoneuroimmunology into personalized medicine: a systems biology perspective. Pers Med 8:641–649

    Article  Google Scholar 

  4. Yan Q (2008) The integration of personalized and systems medicine: bioinformatics support for pharmacogenomics and drug discovery. Methods Mol Biol 448:1–19

    Article  CAS  PubMed  Google Scholar 

  5. Chaffee MW, McNeill MM (2007) A model of nursing as a complex adaptive system. Nurs Outlook 55:232–241

    Article  PubMed  Google Scholar 

  6. Iris F (2008) Biological modeling in the discovery and validation of cognitive dysfunctions biomarkers. In: Turck CW (ed) Biomarkers for psychiatric disorders. Springers Science + Business Media, New York

    Google Scholar 

  7. Dinicola S, D’Anselmi F, Pasqualato A et al (2011) A systems biology approach to cancer: fractals, attractors, and nonlinear dynamics. OMICS 15:93–104

    Article  CAS  PubMed  Google Scholar 

  8. Sturmberg JP, Martin CM (2013) Complexity in health: an introduction. In: Sturmberg JP, Martin CM (eds) Handbook of systems and complexity in health. Springer Science + Business Media, New York

    Chapter  Google Scholar 

  9. Bleeker FE, Lamba S, Rodolfo M et al (2009) Mutational profiling of cancer candidate genes in glioblastoma, melanoma and pancreatic carcinoma reveals a snapshot of their genomic landscapes. Hum Mutat 30:E451–E459

    Article  PubMed  Google Scholar 

  10. Manabe I (2011) Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ J 75:2739–2748

    Article  CAS  PubMed  Google Scholar 

  11. Dinarello CA (2011) Blocking interleukin-1β in acute and chronic autoinflammatory diseases. J Intern Med 269:16–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Heng HHQ (2008) The conflict between complex systems and reductionism. JAMA 300:1580–1581

    Article  CAS  PubMed  Google Scholar 

  13. Avner BS, Fialho AM, Chakrabarty AM (2012) Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework. Bioengineered 3:262–270

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kitano H (2007) The theory of biological robustness and its implication in cancer. Ernst Schering Res Found Workshop 61:69–88

    Article  CAS  PubMed  Google Scholar 

  15. Yan Q (2012) The role of psychoneuroimmunology in personalized and systems medicine. Methods Mol Biol 934:3–19

    Article  PubMed  Google Scholar 

  16. Qu Z, Garfinkel A, Weiss JN, Nivala M (2011) Multi-scale modeling in biology: how to bridge the gaps between scales? Prog Biophys Mol Biol 107:21–31

    Article  PubMed Central  PubMed  Google Scholar 

  17. Leyvraz S, Pampallona S, Martinelli G et al (2008) A threefold dose intensity treatment with ifosfamide, carboplatin, and etoposide for patients with small cell lung cancer: a randomized trial. J Natl Cancer Inst 100:533–541

    Article  CAS  PubMed  Google Scholar 

  18. Mittra I (2007) The disconnection between tumor response and survival. Nat Clin Pract Oncol 4:203

    Article  PubMed  Google Scholar 

  19. Krogh-Madsen T, Christini DJ (2012) Nonlinear dynamics in cardiology. Annu Rev Biomed Eng 14:179–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Buchman TG (2004) Nonlinear dynamics, complex systems, and the pathobiology of critical illness. Curr Opin Crit Care 10:378–382

    Article  PubMed  Google Scholar 

  21. Chay TR, Rinzel J (1985) Bursting, beating, and chaos in an excitable membrane model. Biophys J 47:357–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Huang S, Wikswo J (2006) Dimensions of systems biology. Rev Physiol Biochem Pharmacol 157:81–104

    Article  CAS  PubMed  Google Scholar 

  23. Jones DP, Go Y-M (2010) Redox compartmentalization and cellular stress. Diabetes Obes Metab 12(Suppl 2):116–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wilders R, Jongsma HJ (1993) Beating irregularity of single pacemaker cells isolated from the rabbit sinoatrial node. Biophys J 65:2601–2613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Zhang Z, Chen D, Liu W et al (2011) Nonparametric evaluation of dynamic disease risk: a spatio-temporal kernel approach. PLoS One 6:e17381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kopec AM, Carew TJ (2013) Growth factor signaling and memory formation: temporal and spatial integration of a molecular network. Learn Mem 20:531–539

    Article  CAS  PubMed  Google Scholar 

  27. Gulsuner S, Walsh T, Watts AC (2013) Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154:518–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Manor B, Lipsitz LA (2013) Physiologic complexity and aging: implications for physical function and rehabilitation. Prog Neuropsychopharmacol Biol Psychiatry 45:287–293

    Article  PubMed Central  PubMed  Google Scholar 

  29. Jonker MJ, Melis JPM, Kuiper RV et al (2013) Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs. Aging Cell 12:901–909

    Article  CAS  PubMed  Google Scholar 

  30. Zykovich A, Hubbard A, Flynn JM et al (2014) Genome-wide DNA methylation changes with age in disease free human skeletal muscle. Aging Cell 13(2):360–366

    Article  CAS  PubMed  Google Scholar 

  31. Halberg F, Cornélissen G, Wilson D et al (2009) Chronobiology and chronomics: detecting and applying the cycles of nature. Biologist (London) 56:209–214

    Google Scholar 

  32. Lopes RS, Resende NM, Honorio-França AC et al (2013) Application of bioinformatics in chronobiology research. ScientificWorldJournal 2013:153839

    PubMed Central  Google Scholar 

  33. Klevecz RR, Li CM, Marcus I et al (2008) Collective behavior in gene regulation: the cell is an oscillator, the cell cycle a developmental process. FEBS J 275:2372–2384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kurz FT, Aon MA, O’Rourke B et al (2010) Spatio-temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters. Proc Natl Acad Sci U S A 107:14315–14320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Schultze-Kraft M, Becker R, Breakspear M et al (2011) Exploiting the potential of three dimensional spatial wavelet analysis to explore nesting of temporal oscillations and spatial variance in simultaneous EEG-fMRI data. Prog Biophys Mol Biol 105:67–79

    Article  PubMed  Google Scholar 

  36. Stephane M, Leuthold A, Kuskowski M et al (2012) The temporal, spatial, and frequency dimensions of neural oscillations associated with verbal working memory. Clin EEG Neurosci 43:145–153

    Article  PubMed  Google Scholar 

  37. Lenz P, Søgaard-Andersen L (2011) Temporal and spatial oscillations in bacteria. Nat Rev Microbiol 9:565–577

    Article  CAS  PubMed  Google Scholar 

  38. Vandeput S, Verheyden B, Aubert AE, Van Huffel S (2012) Nonlinear heart rate dynamics: circadian profile and influence of age and gender. Med Eng Phys 34:108–117

    Article  CAS  PubMed  Google Scholar 

  39. Ramanujan VK, Herman BA (2007) Aging process modulates nonlinear dynamics in liver cell metabolism. J Biol Chem 282:19217–19226

    Article  CAS  PubMed  Google Scholar 

  40. Milton J, Black D (1995) Dynamic diseases in neurology and psychiatry. Chaos 5:8–13

    Article  PubMed  Google Scholar 

  41. Pezard L, Nandrino JL, Renault B et al (1996) Depression as a dynamical disease. Biol Psychiatry 39:991–999

    Article  CAS  PubMed  Google Scholar 

  42. Schmid GB (1991) Chaos theory and schizophrenia: elementary aspects. Psychopathology 24:185–198

    Article  CAS  PubMed  Google Scholar 

  43. An der Heiden U (2006) Schizophrenia as a dynamical disease. Pharmacopsychiatry 39(Suppl 1):S36–S42

    Article  PubMed  Google Scholar 

  44. Lopes da Silva F, Blanes W, Kalitzin SN et al (2003) Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44(Suppl 12):72–83

    Article  PubMed  Google Scholar 

  45. Warren K, Hawkins RC, Sprott JC (2003) Substance abuse as a dynamical disease: evidence and clinical implications of nonlinearity in a time series of daily alcohol consumption. Addict Behav 28:369–374

    Article  PubMed  Google Scholar 

  46. Schiff SJ (2010) Towards model-based control of Parkinson’s disease. Philos Trans A Math Phys Eng Sci 368:2269–2308

    Article  PubMed Central  PubMed  Google Scholar 

  47. Edelstein-Keshet L, Israel A, Lansdorp P (2001) Modelling perspectives on aging: can mathematics help us stay young? J Theor Biol 213:509–525

    Article  CAS  PubMed  Google Scholar 

  48. Harms HM, Prank K, Brosa U et al (1992) Classification of dynamical diseases by new mathematical tools: application of multi-dimensional phase space analyses to the pulsatile secretion of parathyroid hormone. Eur J Clin Invest 22:371–377

    Article  CAS  PubMed  Google Scholar 

  49. Tretter F, Gebicke-Haerter PJ, An der Heiden U et al (2011) Affective disorders as complex dynamic diseases—a perspective from systems biology. Pharmacopsychiatry 44(Suppl 1):S2–S8

    Article  PubMed  Google Scholar 

  50. Kumari M, Chandola T, Brunner E et al (2010) A nonlinear relationship of generalized and central obesity with diurnal cortisol secretion in the Whitehall II study. J Clin Endocrinol Metab 95:4415–4423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Damle RN, Calissano C, Chiorazzi N (2010) Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Best Pract Res Clin Haematol 23:33–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Stahlhut Espinosa CE, Slack FJ (2006) The role of microRNAs in cancer. Yale J Biol Med 79:131–140

    PubMed Central  PubMed  Google Scholar 

  53. Belair J, Glass L, An Der Heiden U, Milton J (1995) Dynamical disease: identification, temporal aspects and treatment strategies of human illness. Chaos 5:1–7

    Article  PubMed  Google Scholar 

  54. Frey U, Maksym G, Suki B (2011) Temporal complexity in clinical manifestations of lung disease. J Appl Physiol 110:1723–1731

    Article  PubMed  Google Scholar 

  55. Odgers CL, Mulvey EP, Skeem JL et al (2009) Capturing the ebb and flow of psychiatric symptoms with dynamical systems models. Am J Psychiatry 166:575–582

    Article  PubMed  Google Scholar 

  56. Shaffer DR, Scher HI (2003) Prostate cancer: a dynamic illness with shifting targets. Lancet Oncol 4:407–414

    Article  PubMed  Google Scholar 

  57. Abu-Asab MS, Chaouchi M, Alesci S et al (2011) Biomarkers in the age of omics: time for a systems biology approach. OMICS 15:105–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Filiou MD, Turck CW (2011) General overview: biomarkers in neuroscience research. Int Rev Neurobiol 101:1–17

    Article  CAS  PubMed  Google Scholar 

  59. Dunn DA, Apanovitch D, Follettie M et al (2010) Taking a systems approach to the identification of novel therapeutic targets and biomarkers. Curr Pharm Biotechnol 11:721–734

    Article  CAS  PubMed  Google Scholar 

  60. Jack CR Jr, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Chen L, Liu R, Liu Z-P et al (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci Rep 2:342

    PubMed Central  PubMed  Google Scholar 

  62. Li M, Zeng T, Liu R, Chen L (2014) Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis. Brief Bioinform 15(2):229–243

    Article  CAS  PubMed  Google Scholar 

  63. Li X, Blount PL, Vaughan TL, Reid BJ (2011) Application of biomarkers in cancer risk management: evaluation from stochastic clonal evolutionary and dynamic system optimization points of view. PLoS Comput Biol 7:e1001087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Younesi E, Hofmann-Apitius M (2013) From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine. EPMA J 4:23

    Article  PubMed Central  PubMed  Google Scholar 

  65. Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol 29:613–624

    Article  CAS  PubMed  Google Scholar 

  66. Bengoechea JA (2012) Infection systems biology: from reactive to proactive (P4) medicine. Int Microbiol 15:55–60

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yan, Q. (2014). From Pharmacogenomics and Systems Biology to Personalized Care: A Framework of Systems and Dynamical Medicine. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 1175. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0956-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0956-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0955-1

  • Online ISBN: 978-1-4939-0956-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics