Skip to main content

Positional Scanning Substrate Combinatorial Library (PS-SCL) Approach to Define Caspase Substrate Specificity

  • Protocol
  • First Online:
Caspases,Paracaspases, and Metacaspases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1133))

Abstract

Positional scanning substrate combinatorial library (PS-SCL) is a powerful tool for studying substrate specificity of proteolytic enzymes. Here, we describe the protocol for analyzing S4-S2 pockets preferences of caspases using PS-SCL. Additionally, we describe procedures for the identification of optimal substrates sequence after PS-SCL, solid phase synthesis, and purification of selected fluorogenic substrates, as well as their kinetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9(9):690–701. doi:10.1038/nrd3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384(Pt 2):201–232. doi:10.1042/BJ20041142

    CAS  PubMed  Google Scholar 

  3. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91(4):443–446

    Article  CAS  PubMed  Google Scholar 

  4. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284(33):21777–21781. doi:10.1074/jbc.R800084200, R800084200

    Article  CAS  PubMed  Google Scholar 

  5. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316

    Article  CAS  PubMed  Google Scholar 

  6. Poreba M, Drag M (2010) Current strategies for probing substrate specificity of proteases. Curr Med Chem 17(33):3968–3995

    Article  CAS  PubMed  Google Scholar 

  7. Ostresh JM, Winkle JH, Hamashin VT et al (1994) Peptide libraries: determination of relative reaction rates of protected amino acids in competitive couplings. Biopolymers 34(12):1681–1689. doi:10.1002/bip.360341212

    Article  CAS  PubMed  Google Scholar 

  8. Rano TA, Timkey T, Peterson EP et al (1997) A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE). Chem Biol 4(2):149–155, S1074-5521(97)90258-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Sleath PR, Hendrickson RC, Kronheim SR et al (1990) Substrate specificity of the protease that processes human interleukin-1 beta. J Biol Chem 265(24):14526–14528

    CAS  PubMed  Google Scholar 

  10. Howard AD, Kostura MJ, Thornberry N et al (1991) IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31-kDa IL-1 alpha. J Immunol 147(9):2964–2969

    CAS  PubMed  Google Scholar 

  11. Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356(6372):768–774. doi:10.1038/356768a0

    Article  CAS  PubMed  Google Scholar 

  12. Thornberry NA, Molineaux SM (1995) Interleukin-1 beta converting enzyme: a novel cysteine protease required for IL-1 beta production and implicated in programmed cell death. Protein Sci 4(1):3–12. doi:10.1002/pro.5560040102

    Article  CAS  PubMed  Google Scholar 

  13. Thornberry NA, Rano TA, Peterson EP et al (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272(29):17907–17911

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Calvo M, Peterson EP, Rasper DM et al (1999) Purification and catalytic properties of human caspase family members. Cell Death Differ 6(4):362–369. doi:10.1038/sj.cdd.4400497

    Article  CAS  PubMed  Google Scholar 

  15. Wachmann K, Pop C, van Raam BJ et al (2010) Activation and specificity of human caspase-10. Biochemistry 49(38):8307–8315. doi:10.1021/bi100968m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mikolajczyk J, Scott FL, Krajewski S et al (2004) Activation and substrate specificity of caspase-14. Biochemistry 43(32):10560–10569. doi:10.1021/bi0498048

    Article  CAS  PubMed  Google Scholar 

  17. Edwards PD, Mauger RC, Cottrell KM et al (2000) Synthesis and enzymatic evaluation of a P1 arginine aminocoumarin substrate library for trypsin-like serine proteases. Bioorg Med Chem Lett 10(20):2291–2294

    Article  CAS  PubMed  Google Scholar 

  18. Backes BJ, Harris JL, Leonetti F et al (2000) Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat Biotechnol 18(2):187–193. doi:10.1038/72642

    Article  CAS  PubMed  Google Scholar 

  19. Harris JL, Backes BJ, Leonetti F et al (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad Sci U S A 97(14):7754–7759. doi:10.1073/pnas.140132697, 140132697 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maly DJ, Leonetti F, Backes BJ et al (2002) Expedient solid-phase synthesis of fluorogenic protease substrates using the 7-amino-4-carbamoylmethylcoumarin (ACC) fluorophore. J Org Chem 67(3):910–915, jo016140o [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Walters J, Pop C, Scott FL et al (2009) A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biochem J 424(3):335–345. doi:10.1042/BJ20090825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choe Y, Leonetti F, Greenbaum DC et al (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281(18):12824–12832. doi:10.1074/jbc.M513331200

    Article  CAS  PubMed  Google Scholar 

  23. Debela M, Magdolen V, Schechter N et al (2006) Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J Biol Chem 281(35):25678–25688. doi:10.1074/jbc.M602372200, M602372200 [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Hachmann J, Snipas SJ, van Raam BJ et al (2012) Mechanism and specificity of the human paracaspase MALT1. Biochem J 443(1):287–295. doi:10.1042/BJ20120035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Drag M, Mikolajczyk J, Bekes M et al (2008) Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes). Biochem J 415(3):367–375. doi:10.1042/BJ20080779, BJ20080779 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia-Calvo M, Peterson EP, Leiting B et al (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273(49):32608–32613

    Article  CAS  PubMed  Google Scholar 

  27. Stennicke HR, Salvesen GS (1999) Caspases: preparation and characterization. Methods 17(4):313–319. doi:10.1006/meth.1999.0745

    Article  CAS  PubMed  Google Scholar 

  28. Ekici OD, Li ZZ, Campbell AJ et al (2006) Design, synthesis, and evaluation of aza-peptide Michael acceptors as selective and potent inhibitors of caspases-2, -3, -6, -7, -8, -9, and -10. J Med Chem 49(19):5728–5749. doi:10.1021/jm0601405

    Article  CAS  PubMed  Google Scholar 

  29. Fu J, Yang Y, Zhang XW et al (2010) Discovery of 1H-benzo[d][1,2,3]triazol-1-yl 3,4,5-trimethoxybenzoate as a potential antiproliferative agent by inhibiting histone deacetylase. Bioorg Med Chem 18(24):8457–8462. doi:10.1016/j.bmc.2010.10.049

    Article  CAS  PubMed  Google Scholar 

  30. Carpino LA, Han GY (1972) 9-Fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 37(22):3404–3409

    Article  CAS  Google Scholar 

  31. Kaiser E, Colescott RL, Bossinger CD et al (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598

    Article  CAS  PubMed  Google Scholar 

  32. Chang CD, Meienhofer J (1978) Solid-phase peptide synthesis using mild base cleavage of N alpha-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int J Pept Protein Res 11(3):246–249

    Article  CAS  PubMed  Google Scholar 

  33. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis, the practical approach series. Oxford University Press, New York, pp 1–74

    Google Scholar 

  34. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154

    Article  CAS  Google Scholar 

  35. McStay GP, Salvesen GS, Green DR (2008) Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15(2):322–331. doi:10.1038/sj.cdd.4402260

    Article  CAS  PubMed  Google Scholar 

  36. Stennicke HR, Salvesen GS (1997) Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 272(41):25719–25723

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Centre grant 2011/03/B/ST5/01048 and the Foundation for Polish Science in Poland. This work is co-financed by the European Union as part of the European Social Fund.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Poręba, M., Szalek, A., Kasperkiewicz, P., Drąg, M. (2014). Positional Scanning Substrate Combinatorial Library (PS-SCL) Approach to Define Caspase Substrate Specificity. In: V. Bozhkov, P., Salvesen, G. (eds) Caspases,Paracaspases, and Metacaspases. Methods in Molecular Biology, vol 1133. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0357-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0357-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0356-6

  • Online ISBN: 978-1-4939-0357-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics