Skip to main content

Detection and Measurement of Paracaspase MALT1 Activity

  • Protocol
  • First Online:
Caspases,Paracaspases, and Metacaspases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1133))

Abstract

The paracaspase MALT1 is a Cys-dependent, Arg-specific protease that plays an essential role in the activation and proliferation of lymphocytes during the immune response. Oncogenic activation of MALT1 is associated with the development of specific forms of B-cell lymphomas. Through specific cleavage of its substrates, MALT1 controls various aspects of lymphocyte activation, including the activation of transcriptional pathways, the stabilization of mRNAs, and an increase in cellular adhesion. In lymphocytes, the activity of MALT1 is tightly controlled by its inducible monoubiquitination, which promotes the dimerization of MALT1. Here, we describe both in vitro and in vivo assays that have been developed to assess MALT1 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Du MQ (2011) MALT lymphoma: many roads lead to nuclear factor-kappaB activation. Histopathology 58(1):26–38

    Article  PubMed  Google Scholar 

  2. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6(4):961–967

    CAS  PubMed  Google Scholar 

  3. Rosebeck S, Rehman AO, Lucas PC, McAllister-Lucas LM (2011) From MALT lymphoma to the CBM signalosome: three decades of discovery. Cell Cycle 10(15):2485–2496

    Article  CAS  PubMed  Google Scholar 

  4. Thome M, Charton JE, Pelzer C, Hailfinger S (2010) Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol 2(9):a003004

    Article  PubMed  Google Scholar 

  5. Staudt LM (2010) Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2(6):a000109

    Article  PubMed  Google Scholar 

  6. Ruland J, Duncan GS, Wakeham A, Mak TW (2003) Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19(5):749–758

    Article  CAS  PubMed  Google Scholar 

  7. Ruefli-Brasse AA, French DM, Dixit VM (2003) Regulation of NF-kappaB-dependent lymphocyte activation and development by paracaspase. Science 302(5650):1581–1584

    Article  CAS  PubMed  Google Scholar 

  8. Thome M (2008) Multifunctional roles for MALT1 in T-cell activation. Nat Rev Immunol 8:495–500

    Article  CAS  PubMed  Google Scholar 

  9. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2(10):725–734

    Article  CAS  PubMed  Google Scholar 

  10. Wiesmann C, Leder L, Blank J, Bernardi A, Melkko S, Decock A, D’Arcy A, Villard F, Erbel P, Hughes N, Freuler F, Nikolay R, Alves J, Bornancin F, Renatus M (2012) Structural determinants of MALT1 protease activity. J Mol Biol 419(1–2):4–21

    Article  CAS  PubMed  Google Scholar 

  11. Yu JW, Jeffrey PD, Ha JY, Yang X, Shi Y (2011) Crystal structure of the mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) paracaspase region. Proc Natl Acad Sci U S A 108(52):21004–21009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Snipas SJ, Wildfang E, Nazif T, Christensen L, Boatright KM, Bogyo M, Stennicke HR, Salvesen GS (2004) Characteristics of the caspase-like catalytic domain of human paracaspase. Biol Chem 385(11):1093–1098

    Article  CAS  PubMed  Google Scholar 

  13. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ (2004) The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14(3):289–301

    Article  CAS  PubMed  Google Scholar 

  14. Oeckinghaus A, Wegener E, Welteke V, Ferch U, Arslan SC, Ruland J, Scheidereit C, Krappmann D (2007) Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation. EMBO J 26(22):4634–4645

    Article  CAS  PubMed  Google Scholar 

  15. Lucas PC, Yonezumi M, Inohara N, McAllister-Lucas LM, Abazeed ME, Chen FF, Yamaoka S, Seto M, Nunez G (2001) Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem 276(22):19012–19019

    Article  CAS  PubMed  Google Scholar 

  16. Rebeaud F, Hailfinger S, Posevitz-Fejfar A, Tapernoux M, Moser R, Rueda D, Gaide O, Guzzardi M, Iancu EM, Rufer N, Fasel N, Thome M (2008) The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol 9:272–281

    Article  CAS  PubMed  Google Scholar 

  17. Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J, Sun L, Chen ZJ, Marynen P, Beyaert R (2008) T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 9(3):263–271

    Article  CAS  PubMed  Google Scholar 

  18. Vercammen D, Declercq W, Vandenabeele P, Van Breusegem F (2007) Are metacaspases caspases? J Cell Biol 179(3):375–380

    Article  CAS  PubMed  Google Scholar 

  19. Duwel M, Welteke V, Oeckinghaus A, Baens M, Kloo B, Ferch U, Darnay BG, Ruland J, Marynen P, Krappmann D (2009) A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J Immunol 182(12):7718–7728

    Article  PubMed  Google Scholar 

  20. Hailfinger S, Nogai H, Pelzer C, Jaworski M, Cabalzar K, Charton JE, Guzzardi M, Decaillet C, Grau M, Dorken B, Lenz P, Lenz G, Thome M (2011) Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci U S A 108(35):14596–14601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Weih F, Durham SK, Barton DS, Sha WC, Baltimore D, Bravo R (1996) Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent. J Immunol 157(9):3974–3979

    CAS  PubMed  Google Scholar 

  22. Marienfeld R, May MJ, Berberich I, Serfling E, Ghosh S, Neumann M (2003) RelB forms transcriptionally inactive complexes with RelA/p65. J Biol Chem 278(22):19852–19860

    Article  CAS  PubMed  Google Scholar 

  23. Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A, Acquaviva R, Formisano S, Vito P, Leonardi A (2006) ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 281(27):18482–18488

    Article  CAS  PubMed  Google Scholar 

  24. Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, Van Damme P, Gevaert K, Beyaert R (2011) T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J 30(9):1742–1752

    Article  CAS  PubMed  Google Scholar 

  25. Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K, Satoh T, Mino T, Suzuki Y, Standley DM, Tsujimura T, Rakugi H, Isaka Y, Takeuchi O, Akira S (2013) Malt1-induced cleavage of regnase-1 in CD4 helper T cells regulates immune activation. Cell 153(5):1036–1049

    Article  CAS  PubMed  Google Scholar 

  26. Rosebeck S, Madden L, Jin X, Gu S, Apel IJ, Appert A, Hamoudi RA, Noels H, Sagaert X, Van Loo P, Baens M, Du MQ, Lucas PC, McAllister-Lucas LM (2011) Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 331(6016):468–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hachmann J, Snipas SJ, van Raam BJ, Cancino EM, Houlihan EJ, Poreba M, Kasperkiewicz P, Drag M, Salvesen GS (2012) Mechanism and specificity of the human paracaspase MALT1. Biochem J 443(1):287–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Fontan L, Yang C, Kabaleeswaran V, Volpon L, Osborne MJ, Beltran E, Garcia M, Cerchietti L, Shaknovich R, Yang SN, Fang F, Gascoyne RD, Martinez-Climent JA, Glickman JF, Borden K, Wu H, Melnick A (2012) MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell 22(6):812–824

    Article  CAS  PubMed  Google Scholar 

  29. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS (2003) A unified model for apical caspase activation. Mol Cell 11(2):529–541

    Article  CAS  PubMed  Google Scholar 

  30. Roschitzki-Voser H, Schroeder T, Lenherr ED, Frolich F, Schweizer A, Donepudi M, Ganesan R, Mittl PR, Baici A, Grutter MG (2012) Human caspases in vitro: expression, purification and kinetic characterization. Protein Expr Purif 84(2):236–246

    Article  CAS  PubMed  Google Scholar 

  31. Pelzer C, Cabalzar K, Wolf A, Gonzalez M, Lenz G, Thome M (2013) MALT1 protease activity is controlled by monoubiquitination. Nat Immunol 14:337–345

    Article  CAS  PubMed  Google Scholar 

  32. Hailfinger S, Lenz G, Ngo V, Posvitz-Fejfar A, Rebeaud F, Guzzardi M, Penas EM, Dierlamm J, Chan WC, Staudt LM, Thome M (2009) Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 106(47):19946–19951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ferch U, Kloo B, Gewies A, Pfander V, Duwel M, Peschel C, Krappmann D, Ruland J (2009) Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 206(11):2313–2320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Anderson NL, Anderson NG (1978) Analytical techniques for cell fractions. XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis. Anal Biochem 85(2):341–354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katrin Cabalzar, Maike Jaworski, and Chantal Decaillet for critical reading of the manuscript. Work in the Thome laboratory is supported by the Swiss National Science Foundation, the Swiss Cancer League, the foundations Leenaards and Helmut Horten, the Novartis Foundation for Medical-Biological Research, and a collaboration agreement with Ono Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hailfinger, S., Pelzer, C., Thome, M. (2014). Detection and Measurement of Paracaspase MALT1 Activity. In: V. Bozhkov, P., Salvesen, G. (eds) Caspases,Paracaspases, and Metacaspases. Methods in Molecular Biology, vol 1133. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0357-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0357-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0356-6

  • Online ISBN: 978-1-4939-0357-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics