Skip to main content

Xenopus Egg Extracts as a Simplified Model System for Structure–Function Studies of Dynein Regulators

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1136))

Abstract

Many proteins act in multiple pathways which complicates phenotypic analysis. Xenopus egg extracts reconstitute complex reactions in vitro, and this can be used to develop assays that isolate a single function of a multifunctional protein. We have applied this system to study regulators of cytoplasmic dynein (dynein), which has numerous roles in the cell including trafficking, nuclear migration, and mitotic spindle formation. Here we describe a functional assay to specifically study the regulation of spindle pole self-organization by dynein and summarize an experimental approach that was used to perform a structure–function analysis of its regulator Ndel1. The approaches presented here can be generalized to isolate a single function of other multifunctional proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Σ:

Extinction coefficient

MW:

Molecular weight

References

  1. Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    Article  CAS  PubMed  Google Scholar 

  2. Vallee RB, McKenney RJ, Ori-McKenney KM (2012) Multiple modes of cytoplasmic dynein regulation. Nat Cell Biol 14(3):224–230

    Article  CAS  PubMed  Google Scholar 

  3. Hirokawa N et al (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10(10):682–696

    Article  CAS  PubMed  Google Scholar 

  4. Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20:759–779

    Article  CAS  PubMed  Google Scholar 

  5. Walczak CE, Heald R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265:111–158

    Article  CAS  PubMed  Google Scholar 

  6. Hannak E, Heald R (2006) Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts. Nat Protoc 1(5):2305–2314

    Article  CAS  PubMed  Google Scholar 

  7. Carazo-Salas RE et al (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400(6740):178–181

    Article  CAS  PubMed  Google Scholar 

  8. Kalab P, Pu RT, Dasso M (1999) The ran GTPase regulates mitotic spindle assembly. Curr Biol 9(9):481–484

    Article  CAS  PubMed  Google Scholar 

  9. Ohba T et al (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284(5418):1356–1358

    Article  CAS  PubMed  Google Scholar 

  10. Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284(5418):1359–1362

    Article  CAS  PubMed  Google Scholar 

  11. Zylkiewicz E et al (2011) The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. J Cell Biol 192(3):433–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wittmann T, Hyman T (1999) Recombinant p50/dynamitin as a tool to examine the role of dynactin in intracellular processes. Methods Cell Biol 61:137–143

    Article  CAS  PubMed  Google Scholar 

  13. Tymms MJ (1995) In vitro transcription and translation protocols. Methods in molecular biology 1995. Humana Press, Totowa NJ, xii, 432 p

    Google Scholar 

  14. Emanuele MJ, Stukenberg PT (2009) Probing kinetochore structure and function using Xenopus laevis frog egg extracts. Methods Mol Biol 545:221–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang X, Ems-McClung SC, Walczak CE (2008) Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell 19(7):2752–2765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Emanuele MJ et al (2005) Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore. Mol Biol Cell 16(10):4882–4892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Derewenda U et al (2007) The structure of the coiled-coil domain of Ndel1 and the basis of its interaction with Lis1, the causal protein of Miller-Dieker lissencephaly. Structure 15(11):1467–1481

    Article  CAS  PubMed  Google Scholar 

  18. Schultz J et al (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95(11):5857–5864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40(Database issue):D302–D305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Greenfield NJ (2006) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat Protoc 1(6):2733–2741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Quintyne NJ et al (1999) Dynactin is required for microtubule anchoring at centrosomes. J Cell Biol 147(2):321–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Firestone AJ et al (2012) Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature 484(7392):125–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We want to acknowledge Dr. Zygmunt S. Derewenda (University of Virginia) for insightful discussions on the structure of Ndel1 and generously sharing reagents. We also thank Drs. Won-Chan Choi and Ankoor Roy (University of Virginia) for generating Ndel1 constructs and help with CD spectroscopy experiments. This work was made possible by NIH grants R01-NS036267 and R01-GM063045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Todd Stukenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Żyłkiewicz, E., Stukenberg, P.T. (2014). Xenopus Egg Extracts as a Simplified Model System for Structure–Function Studies of Dynein Regulators. In: Sharp, D. (eds) Mitosis. Methods in Molecular Biology, vol 1136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0329-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0329-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0328-3

  • Online ISBN: 978-1-4939-0329-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics