Skip to main content

RNA Analysis Using Immunoassay Detection Format

  • Protocol
  • First Online:
RNA Amplification and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2822))

Abstract

Oligonucleotide probe tagging and reverse transcriptase polymerase-chain reaction (RT-PCR) are the most widely used techniques currently used for detecting and analyzing RNA. RNA detection using labeled oligonucleotide probe-based approaches is suitable for point-of-care (POC) applications but lacks assay sensitivity, whereas RT-PCR requires complex instrumentation. As an alternative, immunoassay detection formats coupled with isothermal RNA amplification techniques have been proposed for handheld assay development. In this chapter, we describe a robust technique comprising of: (a) target RNA tagging with a complementary oligonucleotide probe labeled with a hapten moiety to form a DNA/RNA duplex hybrid; (b) complexing the DNA/RNA duplex with a pre-coated antibody (Ab) directed at the hapten moiety; (c) sandwich complex formation with an Ab that selectively recognizes the DNA/RNA structural motif; and (d) detection of the sandwich complex using a secondary Ab enzyme conjugate targeting the anti-DNA/RNA Ab followed by standard enzyme-linked immunosorbent assay (ELISA) visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bau HH, Liu C, Mauk M et al (2017) Is instrument-free molecular detection possible? Expert Rev Mol Diagn 17(11):129–158

    Article  Google Scholar 

  2. Nelson PP, Rath BA, Fragkou P et al (2020) Current and future point-of-care tests for emerging and new respiratory viruses and future perspectives. Front Cell Infect Microbiol 10(181):1–9

    Google Scholar 

  3. Moore C (2013) Point-of-care tests for infection control: should rapid testing be in the laboratory or at the front line? J Hosp Infect 85(1):1–7

    Article  CAS  PubMed  Google Scholar 

  4. Hanafiah MK, Arifin N, Bustami Y et al (2017) Development of multiplexed infectious disease lateral flow assays: challenges and opportunities. Diagnostics (Basel) 7(51):1–9

    Google Scholar 

  5. Caliendo AM, Gilbert DN, Ginocchio CC et al (2013) Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis 57(3):S139–S170

    Article  PubMed  Google Scholar 

  6. Walper SA, Aragonés GL, Sapsford KE et al (2018) Detecting biothreat agents: from current diagnostics to developing sensor technologies. ACS Sens 3:1894–2024

    Article  CAS  PubMed  Google Scholar 

  7. La Marca A, Capuzzo M, Paglia T et al (2020) Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online 41(3):483–499

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mak GCK, Cheng PKC, Lau SSY et al (2020) Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol 129:104500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rahman H, Carter I, Basile K (2020) Interpret with caution: an evaluation of the commercial AusDiagnostics versus in-house developed assays for the detection of SARS-CoV-2 virus. J Clin Virol 127:104374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhai P, Ding Y, Wu X et al (2020) The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents 55(5):105955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun Q, Qiu H, Huang M et al (2020) Lower mortality of COVID-19 by early recognition and intervention: Experience from Jiangsu Province. Ann Intensive Care 10(1):2–5

    Article  Google Scholar 

  12. Broadhurst MJ, Brooks TJG, Pollock NR (2016) Diagnosis of Ebola virus disease: past, present, and future. Clin Microbiol Rev 29(4):773–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kozel TR, Burnham-Marusich AR (2017) Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol 55(8):2313–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peeling RW, Mcnerney R (2014) Emerging technologies in point-of-care molecular diagnostics for resource-limited settings. Expert Rev Mol Diagn 14(5):525–534

    Article  CAS  PubMed  Google Scholar 

  15. Cazacu AC, Greer J, Taherivand M et al (2003) Comparison of lateral-flow immunoassay and enzyme immunoassay with viral culture for rapid detection of influenza virus in nasal wash specimens from children. J Clin Microbiol 41(5):2132–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peplies J, Glöckner FO, Amann R (2003) Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl Environ Microbiol 69(3):1397–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Phillips DD, Garboczi DN, Singh K et al (2013) The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recogn 26(8):376–381

    Article  CAS  Google Scholar 

  18. Lau LT, Reid SM, King DP et al (2008) Detection of foot-and-mouth disease virus by nucleic acid sequence-based amplification (NASBA). Vet Microbiol 126(1–3):101–110

    Article  CAS  PubMed  Google Scholar 

  19. Kievits T, Gemen BV, Strijp DV et al (1991) NASBA™ isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. J Virol Methods 35(3):273–286

    Article  CAS  PubMed  Google Scholar 

  20. François C, Danielle R, Alex F et al (2005) The laboratory diagnosis of genital human papillomavirus infections. Can J Infect Dis Med Microbiol 16(2):83–91

    Article  Google Scholar 

  21. Astatke M, Tiburzi O, Connolly C (2022) A novel RNA detection technique for point-of-care identification of pathogens. J Immunoassay Immunochem 43(2):129–158

    Article  Google Scholar 

  22. Boguslawski SJ, Smith DE, Michalak MA et al (1986) Characterization of monoclonal antibody to DNA·RNA and its application to immunodetection of hybrids. J Immunol Methods 89(1):123–130

    Article  CAS  PubMed  Google Scholar 

  23. AbouHaidar MG, Ivanov IG (1999) Non-enzymatic RNA hydrolysis promoted by the combined catalytic activity of buffers and magnesium ions. Z Naturforsch 54c:542–548

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the Johns Hopkins University Applied Physics Laboratory Independent Research and Development. We are very grateful to Dr. Stephen Leppla at National Institute of Allergy and Infectious Diseases (NIAID) for the generous gift of the S9.6 hybridoma cells for the anti-DNA-RNA Ab.

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mekbib Astatke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Astatke, M., Tiburzi, O., Connolly, A., Robinson, M.L. (2024). RNA Analysis Using Immunoassay Detection Format. In: Astatke, M. (eds) RNA Amplification and Analysis. Methods in Molecular Biology, vol 2822. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3918-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3918-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3917-7

  • Online ISBN: 978-1-0716-3918-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics