Skip to main content

Visualization of Individual RNA Molecules by Proximity Ligation-Based Chromogenic In Situ Hybridization Assay

  • Protocol
  • First Online:
RNA Amplification and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2822))

  • 381 Accesses

Abstract

RNA in situ hybridization reveals the abundance and location of gene expression in cells or tissues, providing a technical basis for the clinical diagnosis of diseases. In this chapter, we show a “V” shape probe-mediated single-molecule chromogenic in situ hybridization (vsmCISH) technique for bright-field visualization of individual RNA molecules. In our method, several pairs of target hybridization probes are hybridized to RNA molecules and each probe pair forms a “V” shape overhang. The overhang oligonucleotides then mediated the proximity ligation to form DNA circles, followed by rolling circle amplification for signal enhancement and enzyme-catalyzed chromogenic reaction-based readout. The colorimetric assay avoids problems such as photobleaching and autofluorescence of current fluorescent in situ hybridization-based single-molecule RNA detection techniques. Furthermore, the relatively straightforward protocol makes the method useful for biological research and clinical diagnosis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  PubMed  Google Scholar 

  2. Dempsey GT, Vaughan JC, Chen KH et al (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu Y, Han Z, Sarkar S, Smith AM (2021) Fluorescence in situ hybridization with quantum dot labels in E. Coli cells. Methods Mol Biol 2246:141–155

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Le P, Lim SJ et al (2018) Enhanced mRNA FISH with compact quantum dots. Nat Commun 9(1):4461

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kairdolf BA, Smith AM, Stokes TH et al (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto, Calif) 6(1):143–162

    Article  CAS  PubMed  Google Scholar 

  6. Zhao J, Wu R, Au A et al (2002) Determination of HER2 gene amplification by chromogenic in situ hybridization (CISH) in archival breast carcinoma. Mod Pathol 15(6):657–665

    Article  PubMed  Google Scholar 

  7. Chu YH, Hardin H, Zhang R et al (2019) In situ hybridization: introduction to techniques, applications and pitfalls in the performance and interpretation of assays. Semin Diagn Pathol 36(5):336–341

    Article  PubMed  Google Scholar 

  8. Evans MF, Peng Z, Clark KM et al (2014) HPV E6/E7 RNA in situ hybridization signal patterns as biomarkers of three-tier cervical intraepithelial neoplasia grade. PLoS One 9(3):e91142

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jiang M, Liu L, Hong C et al (2019) Single molecule chromogenic in situ hybridization assay for RNA visualization in fixed cells and tissues. RNA 25(8):1038–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caldwell C, Rottman JB, Paces W et al (2021) Validation of a DKK1 RNAscope chromogenic in situ hybridization assay for gastric and gastroesophageal junction adenocarcinoma tumors. Sci Rep 11(1):9920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rao X, Zheng L, Wei K et al (2023) Novel in situ hybridization assay for chromogenic single-molecule detection of human papillomavirus E6/E7 mRNA. Microbiol Spectr 11:e0389622

    Article  PubMed  Google Scholar 

  12. Fredriksson S, Gullberg M, Jarvius J et al (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20(5):473–477

    Article  CAS  PubMed  Google Scholar 

  13. Manouchehri Doulabi E, Fredolini C, Gallini R et al (2022) Surface protein profiling of prostate-derived extracellular vesicles by mass spectrometry and proximity assays. Commun Biol 5(1):1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jalili R, Horecka J, Swartz JR et al (2018) Streamlined circular proximity ligation assay provides high stringency and compatibility with low-affinity antibodies. Proc Natl Acad Sci USA 115(5):E925–E933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swartzman E, Shannon M, Lieu P et al (2010) Expanding applications of protein analysis using proximity ligation and qPCR. Methods 50(4):S23–S26

    Article  CAS  PubMed  Google Scholar 

  16. Blokzijl A, Friedman M, Ponten F, Landegren U (2010) Profiling protein expression and interactions: proximity ligation as a tool for personalized medicine. J Intern Med 268(3):232–245

    Article  CAS  PubMed  Google Scholar 

  17. Greenwood C, Ruff D, Kirvell S et al (2015) Proximity assays for sensitive quantification of proteins. Biomol Detect Quantif 4:10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang M, Wei K, Li M et al (2023) Single molecule RNA in situ detection in clinical FFPE tissue sections by vsmCISH. RNA 29(6):836–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of Fujian Province (2022J06022 and 2021Y4001), the Quanzhou Science and Technology Plan Project (2021C040R), and the Scientific Research Funds of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqin Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xia, X., Jiang, M., Lin, C., Ke, R. (2024). Visualization of Individual RNA Molecules by Proximity Ligation-Based Chromogenic In Situ Hybridization Assay. In: Astatke, M. (eds) RNA Amplification and Analysis. Methods in Molecular Biology, vol 2822. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3918-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3918-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3917-7

  • Online ISBN: 978-1-0716-3918-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics