Skip to main content

DNA Barcoding in Species Delimitation: From Genetic Distances to Integrative Taxonomy

  • Protocol
  • First Online:
DNA Barcoding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2744))

Abstract

Over the past two decades, DNA barcoding has become the most popular exploration approach in molecular taxonomy, whether for identification, discovery, delimitation, or description of species. The present contribution focuses on the utility of DNA barcoding for taxonomic research activities related to species delimitation, emphasizing the following aspects:

(1) To what extent DNA barcoding can be a valuable ally for fundamental taxonomic research, (2) its methodological and theoretical limitations, (3) the conceptual background and practical use of pairwise distances between DNA barcode sequences in taxonomy, and (4) the different ways in which DNA barcoding can be combined with complementary means of investigation within a broader integrative framework. In this chapter, we recall and discuss the key conceptual advances that have led to the so-called renaissance of taxonomy, elaborate a detailed glossary for the terms specific to this discipline (see Glossary in Chap. 35), and propose a newly designed step-by-step species delimitation protocol starting from DNA barcode data that includes steps from the preliminary elaboration of an optimal sampling strategy to the final decision-making process which potentially leads to nomenclatural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldstein PZ, DeSalle R (2011) Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. BioEssays 33:135–147. https://doi.org/10.1002/bies.201000036

    Article  PubMed  Google Scholar 

  2. Collins RA, Cruickshank RH (2013) The seven deadly sins of DNA barcoding. Mol Ecol Res 13:969–975. https://doi.org/10.1111/1755-0998.12046

    Article  CAS  Google Scholar 

  3. Miralles A (2021) L’alpha-taxonomie au XXIe siècle: Inventorier le Vivant à l’ère du numérique et de la 6e extinction. Habilitation dissertation. Muséum National d’Histoire naturelle. https://hal.science/tel-03249035

  4. Mayr E, Ashlock PD (1991) Principles of systematic zoology, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  5. Sigwart JD (2018) What species mean. A User’s guide to the units of biodiversity. Kipling Will (University of California, Berkeley), CRC Press Taylor & Francis Group: Charles R. Crumly, CRC Press/Taylor and Francis

    Google Scholar 

  6. Fišer Pečnikar Ž, Buzan EV (2014) 20 years since the introduction of DNA barcoding: from theory to application. J Appl Genet 55:43–52. https://doi.org/10.1007/s13353-013-0180-y

    Article  CAS  PubMed  Google Scholar 

  7. Linnæus C (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. 10th edn. Laurentius Salvius, Stockholm

    Google Scholar 

  8. Mallet J, Willmott K (2003) Taxonomy: renaissance or tower of babel? Trends Ecol Evol 18:57–59. https://doi.org/10.1016/S0169-5347(02)00061-7

    Article  Google Scholar 

  9. Sites JW Jr, Marshall JC (2003) Delimiting species: a renaissance issue in systematic biology. Trends Ecol Evol 18:462–420. https://doi.org/10.1016/S0169-5347(03)00184-8

    Article  Google Scholar 

  10. Miller SE (2007) DNA barcoding and the renaissance of taxonomy. PNAS 104:4775–4776. https://doi.org/10.1073/pnas.070046610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiens JJ (2007) Species delimitation: new approaches for discovering diversity. Syst Biol 56:875–878. https://doi.org/10.1080/10635150701748506

    Article  PubMed  Google Scholar 

  12. Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16. https://doi.org/10.1186/1742-9994-7-16

    Article  PubMed  PubMed Central  Google Scholar 

  13. Queiroz K (de) (1998) The general lineage concept of species, species criteria, and the process of speciation. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York

    Google Scholar 

  14. Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman and Hall, London

    Google Scholar 

  15. Samadi S, Barberousse A (2006) The tree, the network, and the species. Biol J Linn Soc 89:509–521. https://doi.org/10.1111/j.1095-8312.2006.00689.x

    Article  Google Scholar 

  16. Sites JW Jr, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 35:199–227. https://doi.org/10.1146/annurev.ecolsys.35.112202.130128

    Article  Google Scholar 

  17. Queiroz K (de) (2007) Species concepts and species delimitation. Syst Biol 56:879–886. https://doi.org/10.1080/10635150701701083

    Article  Google Scholar 

  18. Schlick-Steiner BC, Steiner FM, Seifert B et al (2009) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438. https://doi.org/10.1146/annurev-ento-112408-085432

    Article  CAS  Google Scholar 

  19. Seifert B (2020) The gene and gene expression (GAGE) species concept: an universal approach for all eukaryotic organisms. Syst Biol 69:1033–1038. https://doi.org/10.1093/sysbio/syaa032

    Article  CAS  PubMed  Google Scholar 

  20. Hillis DM (1987) Molecular versus morphological approaches to systematics. Annu Rev Ecol Syst 18:23–42

    Article  Google Scholar 

  21. Dayrat B (2005) Toward integrative taxonomy. Biol J Linn Soc 85:407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x

    Article  Google Scholar 

  22. Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942. https://doi.org/10.1080/10635150701703063

  23. Vieites DR, Wollenberg KC, Andreone F et al (2009) Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. PNAS 106:8267–8272. https://doi.org/10.1073/pnas.081082110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padial JM, Castroviejo-Fisher S, Köhler J et al (2009) Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zool Scr 38:431–447. https://doi.org/10.1111/j.1463-6409.2008.00381.x

    Article  Google Scholar 

  25. Melville J, Chaplin K, Hipsley CA et al (2019) Integrating phylogeography and high-resolution X-ray CT reveals five new cryptic species and multiple hybrid zones among Australian earless dragons. R Soc Open Sci 6:191166. https://doi.org/10.1098/rsos.191166

    Article  PubMed  PubMed Central  Google Scholar 

  26. Will KP, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851. https://doi.org/10.1080/10635150500354878

    Article  PubMed  Google Scholar 

  27. Tautz D, Arctander P, Minelli A et al (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74. https://doi.org/10.1016/S0169-5347(02)00041-1

    Article  Google Scholar 

  28. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeSalle R, Egan MG, Siddal M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc B 360:1905–1916. https://doi.org/10.1098/rstb.2005.1722

    Article  CAS  Google Scholar 

  30. Vogler AP, Monaghan MT (2007) Recent advances in DNA taxonomy. J Zool Syst Evol Res 45:1–10. https://doi.org/10.1111/j.1439-0469.2006.00384.x

    Article  Google Scholar 

  31. Fouquet A, Gilles A, Vences M et al (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS One 2:e1109. https://doi.org/10.1371/journal.pone.0001109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pante E, Puillandre N, Viricel A et al (2015b) Species are hypotheses: avoid connectivity assessments based on pillars of sand. Mol Ecol 24:525–544. https://doi.org/10.1111/mec.13048

    Article  PubMed  Google Scholar 

  33. Pante E, Schoelinck C, Puillandre N (2015a) From integrative taxonomy to species description: one step beyond. Syst Biol 64:152–160. https://doi.org/10.1093/sysbio/syu083

    Article  CAS  PubMed  Google Scholar 

  34. Miralles A, Ducasse J, Brouillet S et al (2022) SPART: a versatile and standardized data exchange format for species partition information. Mol Ecol Resour 22:430–438. https://doi.org/10.1111/1755-0998.13470

    Article  PubMed  Google Scholar 

  35. Puillandre N, Modica MV, Zhang Y et al (2012b) Large-scale species delimitation method for hyperdiverse groups. Mol Ecol 21:2671–2691. https://doi.org/10.1111/j.1365-294X.2012.05559.x

    Article  CAS  PubMed  Google Scholar 

  36. Galtier N (2019) Delineating species in the speciation continuum: a proposal. Evol Appl 12:657–663. https://doi.org/10.1111/eva.12748

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miralles A, Vences M (2013) New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS One 8:e68242. https://doi.org/10.1371/journal.pone.0068242

  38. Ducasse J, Ung V, Lecointre G, Miralles A (2020) LIMES: a tool for comparing species partition. Bioinformatics 36:2282–2283. https://doi.org/10.1093/bioinformatics/btz911

    Article  CAS  PubMed  Google Scholar 

  39. Isaac NJ, Mallet J, Mace GM (2004) Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol Evol 19:464–469. https://doi.org/10.1016/j.tree.2004.06.004

    Article  PubMed  Google Scholar 

  40. Ahrens D, Fujisawa T, Krammer H-J et al (2016) Rarity and incomplete sampling in DNA-based species delimitation. Syst Biol 65:478–494. https://doi.org/10.1093/sysbio/syw002

    Article  PubMed  Google Scholar 

  41. Wiens JJ, Servedio MR (2000) Species delimitation in systematics: inferring diagnostic differences between species. Proc Biol Sci 267:631–636. https://doi.org/10.1098/rspb.2000.1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Straube N, Lyra ML, Paijmans JLA et al (2021) Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens. Mol Ecol Resour 21:2299–2315. https://doi.org/10.1111/1755-0998.13433

    Article  CAS  PubMed  Google Scholar 

  43. Scherz MD, Crottini A, Hutter CR et al (2022) An inordinate fondness for inconspicuous brown frogs: integration of phylogenomics, archival DNA analysis, morphology, and bioacoustics yields 24 new taxa in the subgenus Brygoomantis (genus Mantidactylus) from Madagascar. Megataxa 7:113–311. https://doi.org/10.11646/megataxa.7.2.1

  44. McFadden CS, Benayahu Y, Pante E et al (2011) Limitations of mitochondrial gene barcoding in Octocorallia. Mol Ecol Resour 11:19–31. https://doi.org/10.1111/j.1755-0998.2010.02875.x

    Article  CAS  PubMed  Google Scholar 

  45. Vences M, Thomas M, van der Meijden A et al (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2:5. https://doi.org/10.1186/1742-9994-2-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. CBOL Plant Working Group (2009) A DNA barcode for land plants. PNAS 106:12794–12797. https://doi.org/10.1073/pnas.0905845106

    Article  PubMed Central  Google Scholar 

  47. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89. https://doi.org/10.1111/j.1755-0998.2009.02635.x

    Article  CAS  PubMed  Google Scholar 

  48. Liu Y, Xu C, Sun Y et al (2021) Method for quick DNA barcode reference library construction. Ecol Evol 11:11627–11638. https://doi.org/10.1002/ece3.7788

    Article  PubMed  PubMed Central  Google Scholar 

  49. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Katoh S, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Williams ST, Knowlton N (2001) Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Mol Biol Evol 18:1484–1493. https://doi.org/10.1093/oxfordjournals.molbev.a003934

  53. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vences M, Miralles A, Brouillet S et al (2021) iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for taxonomists. Megataxa 6:77–92. https://doi.org/10.11646/megataxa.6.2.1

    Article  Google Scholar 

  55. Srivathsan A, Meier R (2012) On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28:190–194. https://doi.org/10.1111/j.1096-0031.2011.00370.x

    Article  PubMed  Google Scholar 

  56. Collins RA, Boykin LM, Cruickshank RH, Armstrong KF (2012) Barcoding’s next top model: an evaluation of nucleotide substitution models for specimen identification. Methods Ecol Evol 3:457–465. https://doi.org/10.1111/j.2041-210X.2011.00176.x

    Article  Google Scholar 

  57. Highton R (2000) Detecting cryptic species using allozyme data. In: Bruce RC, Jaeger RG, Houck LD (eds) The biology of plethodontid salamanders. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  58. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soils. PLoS Comput Biol 2:e92. https://doi.org/10.1371/journal.pcbi.0020092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422. https://doi.org/10.1371/journal.pbio.0030422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elias M, Hill RI, Willmott KR et al (2007) Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc R Soc B 274:2881–2889. https://doi.org/10.1098/rspb.2007.1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist?—a case study in blue butterflies (Lepidoptera: Lycaenidae). Front Zool 4:8. https://doi.org/10.1186/1742-9994-4-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Smith MA, Poyarkov NA Jr, Hebert PDN (2008) COI DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Resour 8:235–246. https://doi.org/10.1111/j.1471-8286.2007.01964.x

    Article  CAS  PubMed  Google Scholar 

  63. Kollár J, Poulíčková A, Dvořák P (2022) On the relativity of species, or the probabilistic solution to the species problem. Mol Ecol 31:411–418. https://doi.org/10.1111/mec.16218

    Article  PubMed  Google Scholar 

  64. Dufresnes C, Brelsford A, Jeffries DL, Crochet P-A (2021) Mass of genes rather than master genes underlie the genomic architecture of amphibian speciation. PNAS 118:e2103963118. https://doi.org/10.1073/pnas.2103963118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Malone JH, Fontenot BE (2008) Patterns of reproductive isolation in toads. PLoS One 2:e1109. https://doi.org/10.1371/journal.pone.0003900

    Article  CAS  Google Scholar 

  66. Puillandre N, Lambert A, Brouillet S, Achaz G (2012a) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

    Article  CAS  PubMed  Google Scholar 

  67. Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One 8:e66213. https://doi.org/10.1371/journal.pone.0066213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Mol Ecol Resour 21:609–620. https://doi.org/10.1111/1755-0998.13281

    Article  PubMed  Google Scholar 

  69. Zhang J, Kapli P, Pavlidis P, Stamakakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876. https://doi.org/10.1093/bioinformatics/btt499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pons J, Barraclough TG, Gomez-Zurita J et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609. https://doi.org/10.1080/10635150600852011

    Article  PubMed  Google Scholar 

  71. Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421

    Article  Google Scholar 

  72. Zouros E (2000) The exceptional mitochondrial DNA system of the mussel family Mytilidae. Genes Genet Syst 75:313–318. https://doi.org/10.1266/ggs.75.313

    Article  CAS  PubMed  Google Scholar 

  73. Zieliński P, Nadachowska-Brzyska K, Wielstra B et al (2013) No evidence for nuclear introgression despite complete mtDNA replacement in the Carpathian newt (Lissotriton montandoni). Mol Ecol 22:1884–1903. https://doi.org/10.1111/mec.12225

  74. Schultze N, Spitzweg C, Corti C et al (2020) Mitochondrial ghost lineages blur phylogeography and taxonomy of Natrix helvetica and N. natrix in Italy and Corsica. Zool Scr 49:395–411. https://doi.org/10.1111/zsc.12417

  75. Chan KO, Hertwig ST, Neokleous DN et al (2022) Widely used, short 16S rRNA mitochondrial gene fragments yield poor and erratic results in phylogenetic estimation and species delimitation of amphibians. BMC Ecol Evol 22:37. https://doi.org/10.1186/s12862-022-01994-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miralles A, Bruy T, Wolcott K et al (2020) Repositories for taxonomic data: where we are and what is missing. Syst Biol 69:1231–1253. https://doi.org/10.1093/sysbio/syaa026

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hartop E, Srivathsan A, Ronquist F, Meier R (2022) Towards large-scale integrative taxonomy (LIT): resolving the data conundrum for dark taxa. Syst Biol 71:1404–1422. https://doi.org/10.1093/sysbio/syac033

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tan DSH, Ang Y, Lim GS et al (2010) From ‘cryptic species’ to integrative taxonomy: an iterative process involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera). Zool Scr 39:51–61. https://doi.org/10.1111/j.1463-6409.2009.00408.x

  79. Heethoff M, Laumann M, Weigmann G, Raspotnig G (2011) Integrative taxonomy: combining morphological, molecular and chemical data for species delineation in the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae). Front Zool 8:2. https://doi.org/10.1186/1742-9994-8-2

  80. McKay BD, Mays JHL, Yao C-T et al (2014) Incorporating color into integrative taxonomy: analysis of the varied tit (Sittiparus varius) complex in East Asia. Syst Biol 63:505–517. https://doi.org/10.1093/sysbio/syu016

  81. Wielstra B, Arntzen JW (2014) Exploring the effect of asymmetric mitochondrial DNA introgression on estimating niche divergence in morphologically cryptic species. PLoS One 9:e95504. https://doi.org/10.1371/journal.pone.0095504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Eberle J, Warnock RCM, Ahrens D (2016) Bayesian species delimitation in Pleophylla chafers (Coleoptera) – the importance of prior choice and morphology. BMC Evol Biol 16:94. https://doi.org/10.1186/s12862-016-0659-3

  83. Hillis DM, Chambers EA, Devitt TJ (2021) Contemporary methods and evidence for species delimitation. Ichthyol Herpetol 109:895–903. https://doi.org/10.1643/h2021082

    Article  Google Scholar 

  84. Garnett ST, Christidis L (2017) Taxonomy anarchy hampers conservation. Nature 546:25–27. https://doi.org/10.1038/546025a

    Article  CAS  PubMed  Google Scholar 

  85. Renner S (2016) A return to Linnaeus’s focus on diagnosis, not description: the use of DNA characters in the formal naming of species. Syst Biol 65:1085–1095. https://doi.org/10.1093/sysbio/syw032

    Article  PubMed  Google Scholar 

  86. Kuchta SR, Wake DB (2016) Wherefore and whither the ring species ? Copeia 104:189–201

    Article  Google Scholar 

  87. Hillis DM (2020) The detection and naming of geographic variation within species. Herpetol Rev 51:52–56

    Google Scholar 

  88. Queiroz K (de) (2020) An updated concept of subspecies resolves a dispute about the taxonomy of incompletely separated lineages. Herpetol Rev 51:459–461

    Google Scholar 

  89. Ahrens D, Ahyong ST, Ballerio A et al (2021) Is it time to describe new species without diagnoses? A comment on Sharkey et al. (2021). Zootaxa 5027:151–159. https://doi.org/10.11646/zootaxa.5027.2.1

    Article  PubMed  Google Scholar 

  90. Vences M (2020) The promise of next-generation taxonomy. Megataxa 1:35–38. https://doi.org/10.11646/megataxa.1.1.6

    Article  Google Scholar 

  91. Wheeler QD, Knapp S, Stevenson DW et al (2012) Mapping the biosphere: exploring species to understand the origin, organization and sustainability of biodiversity. Syst Biodivers 10:1–20. https://doi.org/10.1080/14772000.2012.665095

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Vences .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miralles, A., Puillandre, N., Vences, M. (2024). DNA Barcoding in Species Delimitation: From Genetic Distances to Integrative Taxonomy. In: DeSalle, R. (eds) DNA Barcoding. Methods in Molecular Biology, vol 2744. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3581-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3581-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3580-3

  • Online ISBN: 978-1-0716-3581-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics