Skip to main content

Delimiting Species with Single-Locus DNA Sequences

  • Protocol
  • First Online:
DNA Barcoding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2744))

  • 624 Accesses

Abstract

DNA sequences are increasingly used for large-scale biodiversity inventories. Because these genetic data avoid the time-consuming initial sorting of specimens based on their phenotypic attributes, they have been recently incorporated into taxonomic workflows for overlooked and diverse taxa. Major statistical developments have accompanied this new practice, and several models have been proposed to delimit species with single-locus DNA sequences. However, proposed approaches to date make different assumptions regarding taxon lineage history, leading to strong discordance whenever comparisons are made among methods. Distance-based methods, such as Automatic Barcode Gap Discovery (ABGD) and Assemble Species by Automatic Partitioning (ASAP), rely on the detection of a barcode gap (i.e., the lack of overlap in the distributions of intraspecific and interspecific genetic distances) and the associated threshold in genetic distances. Network-based methods, as exemplified by the REfined Single Linkage (RESL) algorithm for the generation of Barcode Index Numbers (BINs), use connectivity statistics to hierarchically cluster-related haplotypes into molecular operational taxonomic units (MOTUs) which serve as species proxies. Tree-based methods, including Poisson Tree Processes (PTP) and the General Mixed Yule Coalescent (GMYC), fit statistical models to phylogenetic trees by maximum likelihood or Bayesian frameworks.

Multiple webservers and stand-alone versions of these methods are now available, complicating decision-making regarding the most appropriate approach to use for a given taxon of interest. For instance, tree-based methods require an initial phylogenetic reconstruction, and multiple options are now available for this purpose such as RAxML and BEAST. Across all examined species delimitation methods, judicious parameter setting is paramount, as different model parameterizations can lead to differing conclusions. The objective of this chapter is to guide users step-by-step through all the procedures involved for each of these methods, while aggregating all necessary information required to conduct these analyses. The “Materials” section details how to prepare and format input files, including options to align sequences and conduct tree reconstruction with Maximum Likelihood and Bayesian inference. The Methods section presents the procedure and options available to conduct species delimitation analyses, including distance-, network-, and tree-based models. Finally, limits and future developments are discussed in the Notes section. Most importantly, species delimitation methods discussed herein are categorized based on five indicators: reliability, availability, scalability, understandability, and usability, all of which are fundamental properties needed for any approach to gain unanimous adoption within the DNA barcoding community moving forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc London Ser B 270:313–321

    Article  CAS  Google Scholar 

  2. Kerr KC, Stoeckle MY, Dove CJ et al (2007) Comprehensive DNA barcode coverage of north American birds. Mol Ecol Notes 7:535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. April J, Mayden LR, Hanner RH, Bernatchez L (2011) Genetic calibration of species diversity among North America’s freshwater fishes. Proc Natl Acad Sci U S A 108:10602–10607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hubert N, Hanner R (2015) DNA barcoding, species delineation and taxonomy: a historical perspective. DNA Barcodes 3:44–58

    Article  Google Scholar 

  5. Janzen DH, Hajibabaei M, Burns JM et al (2005) Wedding biodiversity inventory of a large and complex lepidoptera fauna with DNA barcoding. Philos Trans R Soc Ser B 360:1835–1845

    Article  CAS  Google Scholar 

  6. Smith AM, Rodriguez JJ, Whitfield JB et al (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci U S A 105:12359–12364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith AM, Fisher BL, Hebert PDN (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc Ser B 360:1825–1834

    Article  CAS  Google Scholar 

  8. Butcher BA, Smith MA, Sharkey MJ, Quicke DLJ (2012) A turbo-taxonomic study of Thai Aleiodes (Aleiodes) and Aleiodes (Arcaleiodes) (Hymenoptera: Braconidae: Rogadiniae) based largely on COI barcoded specimens, with rapid descriptions of 179 new species. Zootaxa 3457:1–232

    Article  Google Scholar 

  9. Riedel A, Sagata K, Suhardjono YR et al (2013) Integrative taxonomy on the fast track - towards more sustainability in biodiversity research. Front Zool 10:15

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharkey MJ, Janzen DH, Hallwachs W et al (2021) Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconid parasitoid wasps, including host records for 219 species. Zookeys:1–666

    Google Scholar 

  11. Blaxter M (2003) Molecular systematics: counting angels with DNA. Nature 421:122–124

    Article  CAS  PubMed  Google Scholar 

  12. Sholihah A, Delrieu-Trottin E, Condamine FL et al (2021) Impact of pleistocene eustatic fluctuations on evolutionary dynamics in Southeast Asian biodiversity hotspots. Syst Biol 70:940–960. https://doi.org/10.1093/sysbio/syab006

    Article  PubMed  Google Scholar 

  13. Utami CY, Sholihah A, Condamine FL et al (2022) Cryptic diversity impacts model selection and macroevolutionary inferences in diversification analyses. Proc R Soc B 289:20221335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  15. Lohman DJ, Ingram KK, Prawiradilaga DM et al (2010) Cryptic genetic diversity in “widespread” Southeast Asian bird species suggests that Philippine avian endemism is gravely underestimated. Biol Conserv 143:1885–1890

    Article  Google Scholar 

  16. Barley AJ, Brown JM, Thomson RC (2018) Impact of model violations on the inference of species boundaries under the multispecies coalescent. Syst Biol 67:269–284

    Article  PubMed  Google Scholar 

  17. Chambers EA, Hillis DM (2020) The multispecies coalescent over-splits species in the case of geographically widespread taxa. Syst Biol 69:184–193

    Article  PubMed  Google Scholar 

  18. Sukumaran J, Knowles LL (2017) Multispecies coalescent delimits structure, not species. Proc Natl Acad Sci 114:1607–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877

    Article  CAS  PubMed  Google Scholar 

  20. Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Mol Ecol Resour 21:609–620

    Article  PubMed  Google Scholar 

  21. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.barcodinglife.org). Mol Ecol Notes 7:355–364. https://doi.org/10.1111/j.1471-8286.2006.01678.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One 8. https://doi.org/10.1371/journal.pone.0066213

  23. Fujiwasa T, Barraclough TG (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised mathod and evaluation on simulated data sets. Syst Biol 62:707–724

    Article  Google Scholar 

  24. Pons J, Barraclough TG, Gomez-Zurita J et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–606

    Article  PubMed  Google Scholar 

  25. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876. https://doi.org/10.1093/bioinformatics/btt499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kapli P, Lutteropp S, Zhang J et al (2017) Multi-rate Poisson tree processes for single-locus species delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 33:1630–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arida E, Ashari H, Dahruddin H et al (2021) Exploring the vertebrate fauna of the Bird’s Head Peninsula (Indonesia, West Papua) through DNA barcodes. Mol Ecol Resour 21:2369–2387

    Article  PubMed  Google Scholar 

  28. Shen Y, Hubert N, Huang Y et al (2019) DNA barcoding the ichthyofauna of the Yangtze River: insights from the molecular inventory of a mega-diverse temperate fauna. Mol Ecol Resour 19:1278–1291

    Article  CAS  PubMed  Google Scholar 

  29. Kekkonen M, Mutanen M, Kaila L et al (2015) Delineating species with DNA barcodes: a case of taxon dependent method performance in moths. PLoS One 10:e0122481. https://doi.org/10.1371/journal.pone.0122481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kekkonen M, Hebert PDN (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Mol Ecol Resour 14:706–715

    Article  PubMed  PubMed Central  Google Scholar 

  31. Blair C, Bryson JRW (2017) Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma). Mol Ecol Resour 17:1168–1182

    Article  CAS  PubMed  Google Scholar 

  32. Miralles A, Vences M (2013) New metrics for comparison of taxonomies eveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS One 8:e68242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen W, Hubert N, Li Y et al (2022) Large-scale DNA barcoding of the subfamily Culterinae (Cypriniformes: Xenocyprididae) in East Asia unveils a geographical scale effect, taxonomic warnings and cryptic diversity. Mol Ecol 31:3871–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Geiger MF, Herder F, Monaghan MT et al (2014) Spatial heterogeneity in the mediterranean biodiversity hotspot affects barcoding accuracy of its freshwater fishes. Mol Ecol Resour 14:1210–1221

    Article  CAS  PubMed  Google Scholar 

  35. Arhens D, Fujisawa T, Krammer HJ et al (2016) Rarity and incomplete sampling in DNA-based species delimitation. Syst Biol 65:478–494

    Article  Google Scholar 

  36. Delrieu-Trottin E, Durand J, Limmon G et al (2020) Biodiversity inventory of the grey mullets (Actinopterygii: Mugilidae) of the indo-Australian archipelago through the iterative use of DNA-based species delimitation and specimen assignment methods. Evol Appl 13:1451–1467

    Article  PubMed  PubMed Central  Google Scholar 

  37. Limmon G, Delrieu-Trottin E, Patikawa J et al (2020) Assessing species diversity of Coral Triangle artisanal fisheries: a DNA barcode reference library for the shore fishes retailed at Ambon harbor (Indonesia). Ecol Evol 10:3356–3366

    Article  PubMed  PubMed Central  Google Scholar 

  38. Okonechnikov K, Golosova O, Fursov M et al (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  39. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  41. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guindon S, Dufayard J-F, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  43. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  45. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Darriba D, Posada D, Kozlov AM et al (2020) ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 37:291–294

    Article  CAS  PubMed  Google Scholar 

  47. Edler D, Klein J, Antonelli A, Silvestro D (2021) raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol Evol 12:373–377. https://doi.org/10.1111/2041-210X.13512

    Article  Google Scholar 

  48. Talavera G, Dinca V, Vila R (2013) Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods Ecol Evol 4:1101–1110

    Article  Google Scholar 

  49. Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:1–6. https://doi.org/10.1371/journal.pcbi.1003537

    Article  CAS  Google Scholar 

  50. Rambaut A, Drummond AJ, Xie D et al (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jukes TH, Cantor CR (1969) Evolution of protein molecules. Mamm protein Metab 3:21–132

    Article  CAS  Google Scholar 

  52. Kimura M (1980) A simple method for estimating evolutionary rate of base subtitutions through comparative studies of nucleotide sequences. J Mol Evol 15:111–120

    Article  Google Scholar 

  53. Allaire J (2012) RStudio: integrated development environment for R. Boston, MA 770:165–171

    Google Scholar 

  54. Fujita MK, Leaché AD, Burbrink FT et al (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol 27:480–488

    Article  PubMed  Google Scholar 

  55. Ogilvie HA, Bouckaert RR, Drummond AJ (2017) StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol Biol Evol 34:2101–2114. https://doi.org/10.1093/molbev/msx126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hleap JS, Littlefair JE, Steinke D et al (2021) Assessment of current taxonomic assignment strategies for metabarcoding eukaryotes. Mol Ecol Resour 21:2190–2203

    Article  PubMed  Google Scholar 

  57. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  58. Phillips JD, Gillis DJ, Hanner RH (2022) Lack of statistical rigor in DNA barcoding likely invalidates the presence of a true species’ barcode gap. Front Ecol Evol 10:859099. https://doi.org/10.3389/fevo.2022.859099

    Article  Google Scholar 

  59. Miralles A, Ducasse J, Brouillet S et al (2022) SPART: a versatile and standardized data exchange format for species partition information. Mol Ecol Resour 22:430–438

    Article  PubMed  Google Scholar 

  60. Ducasse J, Ung V, Lecointre G, Miralles A (2020) LIMES: a tool for comparing species partition. Bioinformatics 36:2282–2283

    Article  CAS  PubMed  Google Scholar 

  61. Bergsten J, Bilton DT, Fujisawa T et al (2012) The effect of geographical scale of sampling on DNA barcoding. Syst Biol 61:851–869

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Hubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hubert, N., Phillips, J.D., Hanner, R.H. (2024). Delimiting Species with Single-Locus DNA Sequences. In: DeSalle, R. (eds) DNA Barcoding. Methods in Molecular Biology, vol 2744. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3581-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3581-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3580-3

  • Online ISBN: 978-1-0716-3581-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics