Skip to main content

DNA Barcodes Using a Dual Nanopore Device

  • Protocol
  • First Online:
DNA Barcoding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2744))

  • 593 Accesses

Abstract

We report a novel method based on the current blockade (CB) characteristics obtained from a dual nanopore device that can determine DNA barcodes with near-perfect accuracy using a Brownian dynamics simulation strategy. The method supersedes our previously reported velocity correction algorithm (S. Seth and A. Bhattacharya, RSC Advances, 11:20781–20787, 2021), taking advantage of the better measurement of the time-of-flight (TOF) protocol offered by the dual nanopore setup. We demonstrate the efficacy of the method by comparing our simulation data from a coarse-grained model of a polymer chain consisting of 2048 excluded volume beads of diameter 𝜎 = 24 bp using with those obtained from experimental CB data from a 48,500 bp λ-phage DNA, providing a \( \frac{48500}{2400}\cong 24 \) base pair resolution in simulation. The simulation time scale is compared to the experimental time scale by matching the simulated time-of-flight (TOF) velocity distributions with those obtained experimentally (Rand et al., ACS Nano, 16:5258–5273, 2022). We then use the evolving coordinates of the dsDNA and the molecular features to reconstruct the current blockade characteristics on the fly using a volumetric model based on the effective van der Waal radii of the species inside and in the immediate vicinity of the pore. Our BD simulation mimics the control-zoom-in-logic to understand the origin of the TOF distributions due to the relaxation of the out-of-equilibrium conformations followed by a reversal of the electric fields. The simulation algorithm is quite general and can be applied to differentiate DNA barcodes from different species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hebert PDN, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Ser B Biol Sci 270

    Google Scholar 

  2. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  3. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci 101:14812–14817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vernooy R et al (2010) Barcoding life to conserve biological diversity: beyond the taxonomic imperative. PLoS Biol 8:e1000417

    Article  PubMed  PubMed Central  Google Scholar 

  5. Besansky NJ, Severson DW, Ferdig MT (2003) DNA barcoding of parasites and invertebrate disease vectors: what you don’t know can hurt you. Trends Parasitol 19:545–546

    Article  CAS  PubMed  Google Scholar 

  6. Techen N, Parveen I, Pan Z, Khan IA (2014) DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol 25:103–110

    Article  CAS  PubMed  Google Scholar 

  7. Xiong X et al (2019) DNA barcoding revealed mislabeling and potential health concerns with roasted fish products sold across China. J Food Prot 82:1200–1209

    Article  CAS  PubMed  Google Scholar 

  8. Wong EH-K, Hanner RH (2008) DNA barcoding detects market substitution in North American seafood. Food Res Int 41:828–837

    Article  CAS  Google Scholar 

  9. Ashkenasy N, Sánchez-Quesada J, Bayley H, Ghadiri MR (2005) Recognizing a single base in an individual DNA strand: A step toward DNA sequencing in nanopores. Angew Chem 117:1425–1428

    Article  Google Scholar 

  10. Chen K, Gularek F, Liu B, Weinhold E, Keyser UF (2021) Electrical DNA sequence mapping using oligodeoxynucleotide labels and nanopores. ACS Nano 15:2679–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singer A et al (2010) Nanopore-based sequence-specific detection of duplex DNA for genomic profiling. Nano Lett 10:738–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dorfman KD (2013) The fluid mechanics of genome mapping. AICHE J 59:346–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roh T, Ngau WC, Cui K, Landsman D, Zhao K (2004) High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 22:1013–1016

    Article  CAS  PubMed  Google Scholar 

  14. Albrecht T (2019) Single-molecule analysis with solid-state nanopores. Annu Rev Anal Chem 12:371–387

    Article  Google Scholar 

  15. Chen K, Juhasz M, Gularek F, Weinhold E, Tian Y, Keyser UF, Bell NAW (2017) Ionic current-based mapping of short sequence motifs in single DNA molecules using solid-state nanopores. Nano Lett 17:5199–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kowalczyk SW, Hall AR, Dekker C (2009) Detection of local protein structures along DNA using solid-state nanopores. Nano Lett 10:324–328

    Article  Google Scholar 

  17. Plesa C, Ruitenberg JW, Witteveen MJ, Dekker C (2015) Detection of individual proteins bound along DNA using solid-state nanopores. Nano Lett 15:3153–3158

    Article  CAS  PubMed  Google Scholar 

  18. Singer A, Rapireddy S, Ly DH, Meller A (2012) Electronic barcoding of a viral gene at the single-molecule level. Nano Lett 12:1722–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kong J, Zhu J, Chen K, Keyser UF (2018) Specific biosensing using DNA aptamers and nanopores. Adv Funct Mater 29:1807555

    Article  Google Scholar 

  20. Zhang Y, Liu X, Zhao Y, Yu J-K, Reisner W, Dunbar WB (2018) Single molecule DNA resensing using a two-pore device. Small 14:1801890

    Article  Google Scholar 

  21. Liu X, Zhang Y, Nagel R, Reisner W, Dunbar WB (2019) Controlling DNA tug-of-war in a dual nanopore device. Small 15:1901704

    Article  Google Scholar 

  22. Liu X, Zimny P, Zhang Y, Rana A, Nagel R, Reisner W, Dunbar WB (2020) Flossing DNA in a dual nanopore device. Small 16:1905379

    Article  CAS  Google Scholar 

  23. Rand A, Zimny P, Nagel R, Telang C, Mollison J, Bruns A, Leff E, Reisner W, Dunbar WB (2022) Electronic mapping of a bacterial genome with dual solid-state nanopores and active single-molecule control. ACS Nano 16:5258–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raiber E-A, Hardisty R, van Delft P, Balasubramanian S (2017) Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 1:0069

    Article  CAS  Google Scholar 

  25. Carter B, Zhao K (2020) The epigenetic basis of cellular heterogeneity. Nat Rev Genet 22:235–250

    Article  PubMed  PubMed Central  Google Scholar 

  26. Deamer D, Akeson M, Branton D (2016) Three decades of nanopore sequencing. Nat Biotechnol 34:518–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muthukumar M (2016) Polymer translocation https://doi.org/10.1201/b10901

  28. Wanunu M (2012) Nanopores: A journey towards DNA sequencing. Phys Life Rev 9:125–158

    Article  PubMed  PubMed Central  Google Scholar 

  29. Palyulin VV, Ala-Nissila T, Metzler R (2014) Polymer translocation: the first two decades and the recent diversification. Soft Matter 10:9016–9037

    Article  CAS  PubMed  Google Scholar 

  30. Schneider GF, Dekker C (2012) DNA sequencing with nanopores. Nat Biotechnol 30:326–328

    Article  CAS  PubMed  Google Scholar 

  31. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    Article  CAS  PubMed  Google Scholar 

  32. Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore. Phys Rev Lett 86:3435–3438

    Article  CAS  PubMed  Google Scholar 

  33. Storm AJ, Chen JH, Zandbergen HW, Dekker C (2005) Translocation of double-strand DNA through a silicon oxide nanopore. Phys Rev E 71:051903

    Article  CAS  Google Scholar 

  34. Keyser UF, Koeleman BN, van Dorp S, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C (2006) Direct force measurements on DNA in a solid-state nanopore. Nat Phys 2:473–477

    Article  CAS  Google Scholar 

  35. Gershow M, Golovchenko JA (2007) Recapturing and trapping single molcule with a solid-state nanopore. Nat Nanotechnol 2:775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maglia G, Restrepo MR, Mikhailova E, Bayley H (2008) Enhanced translocation of single DNA molecules through hemolysin nanopores by manipulation of internal charge. Proc Natl Acad Sci 105:19720–19725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stoddart D, Maglia G, Mikhailova E, Heron AJ, Bayley H (2009) Multiple base-recognition sites in a biological nanopore: two heads are better than one. Angew Chem Int Ed 49:556–559

    Article  Google Scholar 

  38. Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A (2009) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 5:160–165

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lu B, Albertorio F, Hoogerheide DP, Golovchenko JA (2011) Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Biophys J 101:70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carson S, Wilson J, Aksimentiev A, Wanunu M (2014) Smooth DNA transport through a narrowed pore geometry. Biophys J 107:2381–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McMullen A, de Haan HW, Tang JX, Stein D (2004) Stiff filamentous virus translocations through solid-state nanopores. Nat Commun 5:4171

    Article  Google Scholar 

  42. Storm AJ, Storm C, Chen J, Zandbergen H, Joanny J-F, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5:1193–1197

    Article  CAS  PubMed  Google Scholar 

  43. Pud S, Chao S-H, Belkin M, Verschueren D, Huijben T, van Engelenburg C, Dekker C, Aksimentiev A (2016) Mechanical trapping of DNA in a double-nanopore system. Nano Lett 16:8021–8028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Plesa C, van Loo N, Ketterer P, Dietz H, Dekker C (2014) Velocity of DNA during translocation through a solid-state nanopore. Nano Lett 15:732–737

    Article  PubMed  Google Scholar 

  45. Restrepo-Perez L, Wong CH, Maglia G, Dekker C, Joo C (2019) Label-free detection of post-translational modifications with a nanopore. Nano Lett 19:7957–7964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fragasso A, Schmid S, Dekker C (2020) Comparing current noise in biological and solid-state nanopores. ACS Nano 14:1338–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  CAS  Google Scholar 

  48. Choudhary A, Joshi H, Chou H-Y, Sarthak K, Wilson J, Maffeo C, Aksimentiev A (2020) High-fidelity capture, threading, and infinite-depth sequencing of single DNA molecules with a double-nanopore system. ACS Nano 14:15566–15576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bell NAW, Chen K, Ghosal S, Ricci M, Keyser UF (2017) Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore. Nat Commun 8:380

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang V, Ermann N, Keyser UF (2019) Current enhancement in solid-state Nanopores depends on three-dimensional DNA structure. Nano Lett 19:5661–5666

    Article  CAS  PubMed  Google Scholar 

  51. Chen K, Jou I, Ermann N, Muthukumar M, Keyser UF, Bell NAW (2021) Dynamics of driven polymer transport through a nanopore. Nat Phys 17:1043–1049

    Article  CAS  Google Scholar 

  52. Grosberg, A. Y., & Rabin, Y. DNA capture into a nanopore: Interplay of diffusion and electrohydrodynamics. J Chem Phys, 133, 165102 (2010)

    Google Scholar 

  53. Sakaue T (2007) Nonequilibrium dynamics of polymer translocation and straightening. Phys Rev E 76:021803

    Article  Google Scholar 

  54. Bhattacharya A, Binder K (2010) Out-of-equilibrium characteristics of a forced translocating chain through a nanopore. Phys Rev E 81:041804

    Article  Google Scholar 

  55. Adhikari R, Bhattacharya A (2013) Driven translocation of a semi-flexible chain through a nanopore: A Brownian dynamics simulation study in two dimensions. J Chem Phys 138:204909

    Article  PubMed  Google Scholar 

  56. Ikonen T, Bhattacharya A, Ala-Nissila T, Sung W (2012) Influence of non-universal effects on dynamical scaling in driven polymer translocation. J Chem Phys 137:085101

    Article  CAS  PubMed  Google Scholar 

  57. Aksimentiev A, Heng JB, Timp G, Schulten K (2004) Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys J 87:2086–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoo J, Aksimentiev A (2011) Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. J Phys Chem Lett 3:45–50

    Article  Google Scholar 

  59. Seth S, Bhattacharya A (2021) DNA barcode by flossing through a cylindrical nanopore. RSC Adv 11:20781–20787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seth S, Bhattacharya A (2021) DNA barcodes using a double nanopore system. Sci Rep 11:9799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seth S, Rand A, Reisner W, Dunbar WB, Sladek R, Bhattacharya A (2022) Discriminating protein tags on a dsDNA construct using a dual nanopore device. Sci Rep 12:11305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de Haan HW, Sean D, Slater GW (2015) Using a Peclet number for the translocation of DNA through a nanopore to tune coarse-grained simulations to experimental conditions. Phys Rev E 91:022601

    Article  Google Scholar 

Download references

Acknowledgments

The research has been supported by a subcontract by The Royal Institution for the Advancement of Learning, McGill University, CA, from the parent grant number 1R21HG011236-01 from the National Human Genome Research Institute at the National Institute of Health. The authors thank Arthur Rand and William B. Dunbar from Nooma Bio for sharing the experimental data used in Fig. 2a. All computations were carried out using STOKES High-Performance Computing Cluster at UCF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniket Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seth, S., Bhattacharya, A. (2024). DNA Barcodes Using a Dual Nanopore Device. In: DeSalle, R. (eds) DNA Barcoding. Methods in Molecular Biology, vol 2744. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3581-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3581-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3580-3

  • Online ISBN: 978-1-0716-3581-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics