Skip to main content

Use of Antibiotics to Eliminate Wolbachia from Mosquitoes and Cell Culture

  • Protocol
  • First Online:
Wolbachia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2739))

  • 471 Accesses

Abstract

Removal of Wolbachia from infected insects is required in most experimental settings when the effects of Wolbachia on biological traits, pathogen blocking, reproduction, and fitness are assessed. This is to ensure that the genetic backgrounds of Wolbachia-infected and uninfected insects are the same. Here, we describe methodologies used for the elimination of Wolbachia from insects and insect cell lines with antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544. https://doi.org/10.1371/journal.pone.0038544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gomes TMFF, Wallau GL, Loreto ELS (2022) Multiple long-range host shifts of major Wolbachia supergroups infecting arthropods. Sci Rep 12:8131. https://doi.org/10.1038/s41598-022-12299-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaur R, Shropshire JD, Cross KL et al (2021) Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe 29:879–893. https://doi.org/10.1016/j.chom.2021.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson KN (2015) The impact of Wolbachia on virus infection in mosquitoes. Viruses 7:5705–5717. https://doi.org/10.3390/v7112903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278. https://doi.org/10.1016/j.cell.2009.11.042

    Article  PubMed  Google Scholar 

  6. Ballard JWO, Melvin RG (2007) Tetracycline treatment influences mitochondrial metabolism and mtDNA density two generations after treatment in Drosophila. Insect Mol Biol 16:799–802. https://doi.org/10.1111/j.1365-2583.2007.00760.x

    Article  CAS  PubMed  Google Scholar 

  7. Li Y-Y, Fields PG, Pang B-P et al (2016) Effects of tetracycline and rifampicin treatments on the fecundity of the Wolbachia -infected host, Tribolium confusum (Coleoptera: Tenebrionidae). J Econ Entomol 109:1458–1464. https://doi.org/10.1093/jee/tow067

    Article  CAS  PubMed  Google Scholar 

  8. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260. https://doi.org/10.1128/MMBR.65.2.232-260.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wangkeeree J, Suwanchaisri K, Roddee J et al (2022) Selective elimination of Wolbachia from the leafhopper Yamatotettix flavovittatus Matsumura. Curr Microbiol 79:173. https://doi.org/10.1007/s00284-022-02822-8

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Liu X, Guo H (2019) Population dynamics of Wolbachia in Laodelphax striatellus (Fallén) under successive stress of antibiotics. Curr Microbiol 76:1306–1312. https://doi.org/10.1007/s00284-019-01762-0

    Article  CAS  PubMed  Google Scholar 

  11. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moullan N, Mouchiroud L, Wang X et al (2015) Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep 10:1681–1691. https://doi.org/10.1016/j.celrep.2015.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SA has been supported by the Australian Research Council Discovery projects (DP180101669 and DP210101791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sassan Asgari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bishop, C., Asgari, S. (2024). Use of Antibiotics to Eliminate Wolbachia from Mosquitoes and Cell Culture. In: Fallon, A.M. (eds) Wolbachia. Methods in Molecular Biology, vol 2739. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3553-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3553-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3552-0

  • Online ISBN: 978-1-0716-3553-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics